已知橢圓的左右焦點(diǎn)坐標(biāo)分別是
,離心率
,直線
與橢圓
交于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求弦的長(zhǎng)度.
(1)。(2)
。
【解析】
試題分析:
思路分析:(1)利用“待定系數(shù)法”設(shè)橢圓的方程為
由
,進(jìn)一步確定b。
(2)建立方程組,消去
,并整理得,應(yīng)用韋達(dá)定理及弦長(zhǎng)公式。
解:(1)依題意可設(shè)橢圓的方程為
1分
則,解得
3分
5分
橢圓
的方程為
6分
(2)設(shè)
7分
聯(lián)立方程,消去
,
并整理得:
9分
10分
12分
即
13分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,確定橢圓的標(biāo)準(zhǔn)方程,一般利用“待定系數(shù)法”,由a,b,c,e的關(guān)系,建立方程組。涉及直線與橢圓的位置關(guān)系,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)
已知橢圓的左右焦點(diǎn)分別為
,短軸兩個(gè)端點(diǎn)為
,且四邊形
是邊長(zhǎng)為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)
滿(mǎn)足
,連接
,交橢圓于
點(diǎn)
。證明:
為定值;
(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得以
為直徑的圓恒過(guò)直線
的交點(diǎn),若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市長(zhǎng)寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)理 題型:解答題
(本題滿(mǎn)分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)
已知橢圓的左右焦點(diǎn)分別為
,短軸兩個(gè)端點(diǎn)為
,且四邊形
是邊長(zhǎng)為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)
滿(mǎn)足
,連接
,交橢圓于點(diǎn)
。證明:
為定值;
(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得以
為直徑的圓恒過(guò)直線
的交點(diǎn),若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高三第二次模擬考試數(shù)學(xué)(文) 題型:解答題
(本題滿(mǎn)分13分)
已知橢圓的左右焦點(diǎn)分別為
,
.在橢圓
中有一內(nèi)接三角形
,其頂點(diǎn)
的坐標(biāo)
,
所在直線的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)的面積最大時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本題滿(mǎn)分13分)
已知橢圓的左右焦點(diǎn)分別
為
,
.在橢圓
中有一內(nèi)接三角形
,其頂點(diǎn)
的坐
標(biāo)
,
所在直線的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)的面積最大時(shí),求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com