(2012•陜西三模)函數(shù)f(x)=ln
1
x
,則此函數(shù)圖象在點(diǎn)(1,f(1))處的切線的傾斜角為( 。
分析:求出函數(shù)的導(dǎo)函數(shù),然后求解x=1時(shí)的導(dǎo)函數(shù)值,通過直線的斜率,求出傾斜角的值即可.
解答:解:因?yàn)楹瘮?shù)f(x)=ln
1
x
的導(dǎo)函數(shù)為:f′(x)=-
1
x

所以f′(1)=-
1
1
=-1
,所以函數(shù)圖象在點(diǎn)(1,f(1))處的切線的斜率為-1,
所以tanα=-1,∴α=
4

故選D.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,切線的斜率的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知f(x)=excosx,則此函數(shù)圖象在點(diǎn)(1,f(1))處的切線的傾斜角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知點(diǎn)A(-1,0)、B(1,0),P(x0,y0)是直線y=x+2上任意一點(diǎn),以A、B為焦點(diǎn)的橢圓過點(diǎn)P.記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),則實(shí)數(shù)b的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個(gè),標(biāo)號為1的小球1個(gè),標(biāo)號為2 的小球n個(gè),已知從袋子隨機(jī)抽取1個(gè)小球,取到標(biāo)號為2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)從袋子中不放回地隨機(jī)抽取2個(gè)球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.
①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個(gè)實(shí)數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知x與y之間的幾組數(shù)據(jù)如下表:
X 0 1 2 3
y 1 3 5 7
則y與x的線性回歸方程
y
=bx+a
必過( 。

查看答案和解析>>

同步練習(xí)冊答案