在△ABC中,D為BC的中點(diǎn),且AB=6,AC=8,則
AD
BC
的值是( 。
A、-28B、-14
C、14D、28
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:只要將
AD
寫成
1
2
(
AB
+
AC
)
,將
BC
寫成
AC
-
AB
,再求數(shù)量積即可.
解答: 解:
AD
=
1
2
(
AB
+
AC
),
BC
=
AC
-
AB
;
AD
BC
=
1
2
(
AB
+
AC
)(
AC
-
AB
)
=
1
2
(
AC
2
-
AB
2
)=
1
2
(64-36)=14

故選C.
點(diǎn)評(píng):不要直接去求數(shù)量積,而是用已知向量去表示未知向量之后再去求數(shù)量積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于x=1對(duì)稱,當(dāng)x∈[0,1]時(shí),f(x)=2x-1,則f(2014)的值為( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
、
e2
是夾角為60°的兩個(gè)單位向量,則向量
a
=2
e1
+
e2
與向量
b
=-3
e1
+2
e2
的夾角為( 。
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AC⊥BC,AC=b,BC=a,則△ABC的外接圓半徑r=
a2+b2
2
,將此結(jié)論拓展到空間,可得出的正確結(jié)論是:在四面體S-ABC中,若SA、SB、SC兩兩互相垂直,SA=a,SB=b,SC=c,則四面體S-ABC的外接球半徑R=( 。
A、
a2+b2+c2
2
B、
a2+b2+c2
3
C、
3a3+b3+c3
3
D、
3abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(x-1)(x-2)(x-3)(x-4),則f′(2)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)1≤x≤3時(shí),函數(shù)f(x)=2x2-6x+c的值域?yàn)椋ā 。?/div>
A、[f(1),f(3)]
B、[f(1),f(
3
2
)]
C、[f(
3
2
),f(3)]
D、[c,f(3)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由“在平面內(nèi)三角形的內(nèi)切圓的圓心到三邊的距離相等”聯(lián)想到“在空間中內(nèi)切于三棱錐的球的球心到三棱錐四個(gè)面的距離相等”這一推理過程是( 。
A、歸納推理B、類比推理
C、演繹推理D、聯(lián)想推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿足k1k2=-
1
9

(Ⅰ)證明:l1與l2相交;
(Ⅱ)求l1與l2的交點(diǎn)P的軌跡C的方程;
(Ⅲ)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與軌跡C交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MQ
,
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(1,3),
OB0
=(2,1),|
OBn
|=
1
2
|
OBn-1
|(n∈N+).
(1)判斷△AB0B1的形狀,并說明理由;
(2)求數(shù)列{|
Bn-1Bn
|}(n∈N+)的通項(xiàng)公式;
(3)若△ABn-1Bn的面積為S △ABn-1Bn=an(n∈N+),求
lim
n→∞
(a1+a2+…+an).

查看答案和解析>>

同步練習(xí)冊(cè)答案