11.設(shè)不等式3-2x<0的解集為M,下列關(guān)系中正確的有②.
①0∈M,2∈M       
②0∉M,2∈M
③0∈M,2∉M   
④0∉M,2∉M.

分析 求出不等式的解集可得集合M,在根據(jù)元素與集合的關(guān)系進行判斷即可.

解答 解:不等式3-2x<0的解集為{x|x$>\frac{3}{2}$},即集合M={x|x$>\frac{3}{2}$},
∵2$>\frac{3}{2}$,$0<\frac{3}{2}$
∴2∈M,0∉M,故①③④不對.②對.
故答案為:②.

點評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,在(-∞,0)上是減函數(shù)的是( 。
A.y=$\frac{1}{x-1}$B.y=1-x2C.y=x2+xD.y=$\frac{1}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線y=x+b與曲線y=$\sqrt{49-{x}^{2}}$有公共點,則b的取值范圍是( 。
A.[-7,7$\sqrt{2}$]B.[-7$\sqrt{2}$,7$\sqrt{2}$]C.[-7,7]D.[0,7$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x,y為任意實數(shù),有a=2x+y,b=2x-y,c=y-1
(1)若4x+y=2,求a2+b2+c2的最小值;
(2)求|a|,|b|,|c|三個數(shù)中最大數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項和為Sn=n(2n+1),則a5=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(sinα+cosα)=sinα•cosα,則f(sin$\frac{π}{6}$)的值為( 。
A.$-\frac{3}{8}$B.$\frac{1}{8}$C.$-\frac{1}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在半徑為5的球面上有不共面的四個點A、B、C、D,且AB=CD=x,BC=DA=y,CA=BD=z,則 x2+y2+z2=(  )
A.120B.140C.180D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知tan$α=\frac{4}{3}$,cos(β-α)=$\frac{{\sqrt{2}}}{10}$,
(1)求sin2α-sinαcosα的值
(2)若0<α<$\frac{π}{2}$<β<π,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足對任意m,n∈N*總有am+n=aman成立,且a1=2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的前n項和為Sn,且bn=log2an,試求數(shù)列$\{\frac{1}{S_n}\}$的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案