【題目】如圖,已知點(diǎn)C是圓心為O半徑為1的半圓弧上從點(diǎn)A數(shù)起的第一個(gè)三等分點(diǎn),是直徑,,直線平面.
(1)證明:;
(2)若M為的中點(diǎn),求證:平面;
(3)求三棱錐的體積.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)由平面,可得.由題意可得,又,即證平面,即證;
(2)由題意,根據(jù)線面平行的判定定理可得平面;
(3)求出三角形的面積,又三棱錐的高為線段的長(zhǎng),根據(jù)錐體的體積公式,即求三棱錐的體積.
(1)證明:∵平面,平面,.
∴.
∵點(diǎn)C在圓O上,是直徑,
∴.
又∵,∴平面.
又∵平面,∴.
(2)證明:∵M,O分別為,中點(diǎn),∴,
又平面,平面,∴平面.
(3)點(diǎn)C是圓心為O半徑為1的半圓弧上從點(diǎn)A數(shù)起的第一個(gè)三等分點(diǎn),
三角形是等邊三角形,到的距離為.
三角形的面積,
又平面,三棱錐的高為1,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是60名學(xué)生參加數(shù)學(xué)競(jìng)賽的成績(jī)(均為整數(shù))的頻率分布直方圖,估計(jì)這次數(shù)學(xué)競(jìng)賽的及格率(60分及以上為及格)是( )
A. 0.9 B. 0.75 C. 0.8 D. 0.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底, )的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(2)設(shè)點(diǎn), 是函數(shù)圖象上兩點(diǎn),若對(duì)任意的,割線的斜率都大于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,點(diǎn)M為棱AE的中點(diǎn).
(1)求證:平面BMD∥平面EFC;
(2)若AB=1,BF=2,求三棱錐A-CEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)函數(shù),討論函數(shù)的單調(diào)性;
(2)當(dāng) 時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路和,在點(diǎn)處交匯,該商業(yè)區(qū)為圓心角,半徑3的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路,與,分別交于,要求與扇形弧相切,切點(diǎn)不在,上.
(1)設(shè)試用表示新建公路的長(zhǎng)度,求出滿足的關(guān)系式,并寫出的范圍;
(2)設(shè),試用表示新建公路的長(zhǎng)度,并且確定的位置,使得新建公路的長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,為坐標(biāo)原點(diǎn),為橢圓的左焦點(diǎn),離心率為,直線與橢圓相交于,兩點(diǎn).
(1)求橢圓的方程;
(2)若是弦的中點(diǎn),是橢圓上一點(diǎn),求的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究下列函數(shù)的定義域、值域、奇偶性和單調(diào)性,并作出其大致圖像.
(1);
(2);
(3);
(4).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com