【題目】電子計算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計算機(jī)利用二進(jìn)制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進(jìn)制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計算結(jié)果用十進(jìn)制表示為

A. 254B. 381C. 510D. 765

【答案】B

【解析】

將符合題意的二進(jìn)制數(shù)列出,轉(zhuǎn)化為十進(jìn)制,然后相加得出結(jié)果.

恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的二進(jìn)制數(shù)為,,,,,共個.轉(zhuǎn)化為十進(jìn)制并相加得 ,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點Q是圓上的動點,點,若線段QN的垂直平分線MQ于點P.

(I)求動點P的軌跡E的方程

(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于B,C兩點,求證:直線AB、AC的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對一次性購買2臺機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準(zhǔn)備一次性購買2臺這種機(jī)器。現(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

10

20

15

以這50臺機(jī)器維修次數(shù)的頻率代替1臺機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo),由檢測結(jié)果得如圖所示的頻率分布直方圖:

(Ⅰ)求這件產(chǎn)品質(zhì)量指標(biāo)的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

(i)利用該正態(tài)分布,求;

(ii)已知每件該產(chǎn)品的生產(chǎn)成本為元,每件合格品(質(zhì)量指標(biāo)值)的定價為元;若為次品(質(zhì)量指標(biāo)值),除了全額退款外且每件次品還須賠付客戶元。若該公司賣出件這種產(chǎn)品,記表示這件產(chǎn)品的利潤,求.

附:.若,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE⊥平面ABCD,CFAEADBC,ADAB,AB=AD=1AE=BC=2.

1)求證:BF∥平面ADE;

2)若二面角E-BD-F的余弦值為,求線段CF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的公差,項和為,且滿足,

1)試尋找一個等差數(shù)列和一個非負(fù)常數(shù),使得等式對于任意的正整數(shù)恒成立,并說明你的理由;

2)對于(1)中的等差數(shù)列和非負(fù)常數(shù),試求)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取100件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產(chǎn)品質(zhì)量/毫克

頻數(shù)

165,175]

3

175,185]

2

185,195]

21

195,205]

36

205,215]

24

215,225]

9

225,235]

5

(Ⅰ)根據(jù)乙流水線樣本的頻率分布直方圖,求乙流水線樣本質(zhì)量的中位數(shù)(結(jié)果保留整數(shù));

(Ⅱ)從甲流水線樣本中質(zhì)量在的產(chǎn)品中任取2件產(chǎn)品,求兩件產(chǎn)品中恰有一件合格品的概率;

甲流水線

乙流水線

總計

合格品

不合格品

總計

(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,能否在犯錯誤的概率不超過0.15的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動包裝流水線的選擇有關(guān)?

下面臨界值表僅供參考:

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過定點的動圓是與圓相內(nèi)切.

(1)求動圓圓心的軌跡方程;

(2)設(shè)動圓圓心的軌跡為曲線是曲線上的兩點,線段的垂直平分線過點,求面積的最大值(是坐標(biāo)原點).

查看答案和解析>>

同步練習(xí)冊答案