(8分)已知x+y-3=0,求的最小值.

解析試題分析:本題中式子的幾何意義是定點(diǎn)(2,-1)到定直線x+y-3=0的距離(其值最小),即的最小值為d=。
考點(diǎn):點(diǎn)到直線的距離公式;兩點(diǎn)間的距離公式。
點(diǎn)評(píng):平常我們常用幾何意義做題,這樣簡(jiǎn)化了做題過程和計(jì)算。的幾何意義是過點(diǎn)與點(diǎn)(a,b)直線的斜率。的幾何意義為點(diǎn)與點(diǎn)(a,b)的距離。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(diǎn)(,-1);
(2)在y軸上的截距是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知直線l經(jīng)過點(diǎn)(0,-2),其傾斜角是60°.
(1)求直線l的方程;(2)求直線l與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖直線lx軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點(diǎn),P為直線l上異于A、B兩點(diǎn)之間的一動(dòng)點(diǎn). 且PQOAOB于點(diǎn)Q

(1)若和四邊形的面積滿足時(shí),請(qǐng)你確定P點(diǎn)在AB上的位置,并求出線段PQ的長(zhǎng);
(2)在x軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,已知三角形的頂點(diǎn)為A(2, 4),B(0,-2),C(-2,3),

求:
(Ⅰ)AB邊上的中線CM所在直線的一般方程;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分) 如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0, p)(p>0), 直線l : y= -p, 點(diǎn)P在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn), 過R、P分別作直線、,使, .
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(3)對(duì)(2)求證:當(dāng)直線MA, MF, MB的斜率存在時(shí),直線MA, MF, MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在中,已知BC邊上的高所在直線的方程為, 平分線所在直線的方程為,若點(diǎn)B的坐標(biāo)為(1,2),

(Ⅰ)求直線BC的方程;
(Ⅱ)求點(diǎn)C的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三角形ABC的頂點(diǎn)坐標(biāo)為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn).
(1)求AB邊所在的直線方程;
(2)求中線AM的長(zhǎng)
(3)求AB邊的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本題12分)
已知直線
(1)若平行,求的值。
(2)若垂直,求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案