【題目】已知函數(shù),
(1)若的一個(gè)極值點(diǎn)到直線的距離為1,求的值;
(2)求方程的根的個(gè)數(shù)
【答案】(1)a=-2或a=-8.(2)見解析
【解析】試題分析:(1)先求出函數(shù) 的導(dǎo)函數(shù) ,令,可得函數(shù)只有一個(gè)極值點(diǎn),根據(jù)點(diǎn)到直線的距離公式可得結(jié)果;(2) 根的個(gè)數(shù)等價(jià)于的零點(diǎn)個(gè)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得結(jié)果.
試題解析:(1)由f′(x)==0,得x=0,
故f(x)僅有一個(gè)極小值點(diǎn)M(0,0),
根據(jù)題意得:
d==1.
∴a=-2或a=-8.
(2)令h(x)=f(x)-g(x)=ln(x2+1)--a,
h′(x)=+=2x.
當(dāng)x∈(0,1)∪(1,+∞)時(shí),h′(x)≥0,
當(dāng)x∈(-∞,-1)∪(-1,0)時(shí),h′(x)<0.
因此,h(x)在(-∞,-1),(-1,0)上時(shí),h(x)單調(diào)遞減,
在(0,1),(1,+∞)上時(shí),h(x)單調(diào)遞增.
又h(x)為偶函數(shù),當(dāng)x∈(-1,1)時(shí),h(x)的極小值為h(0)=1-a.
當(dāng)x→-1-時(shí),h(x)→-∞,當(dāng)x→-1+時(shí),h(x)→+∞,
當(dāng)x→-∞時(shí),h(x)→+∞,當(dāng)x→+∞時(shí),h(x)→+∞.
由根的存在性定理知,方程在(-∞,-1)和(1,+∞)一定有根
故f(x)=g(x)的根的情況為:
當(dāng)1-a>0時(shí),即a<1時(shí),原方程有2個(gè)根;
當(dāng)1-a=0時(shí),即a=1時(shí),原方程有3個(gè)根.
當(dāng)1-a<0時(shí),即a>1時(shí),原方程有4個(gè)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)令,求函數(shù)的極值;
(3)若,正實(shí)數(shù)滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),證明: 為偶函數(shù);
(2)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)若,求實(shí)數(shù)的取值范圍,使在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn),過點(diǎn)任作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值;
(2)證明:對(duì)任意的,總存在,使得 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場進(jìn)行有獎(jiǎng)促銷活動(dòng),顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:從1個(gè)裝有6個(gè)白球、4個(gè)紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客抽獎(jiǎng)的結(jié)果相互獨(dú)立.
(Ⅰ)若顧客選擇參加一次抽獎(jiǎng),求他獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率;
(Ⅱ)某顧客已購物1500元,作為商場經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎(jiǎng)?說明理由;
(Ⅲ)若顧客參加10次抽獎(jiǎng),則最有可能獲得多少現(xiàn)金獎(jiǎng)勵(lì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖:
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該商店準(zhǔn)備一次性進(jìn)貨該商品噸,預(yù)測需要銷售天數(shù);
參考公式和數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,且在上單調(diào)遞增,求實(shí)數(shù)的取值范圍
(2)是否存在實(shí)數(shù),使得函數(shù)在上的最小值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com