8.在直角坐標(biāo)系中,圓錐曲線C:$\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù))的焦點(diǎn)坐標(biāo)是( 。
A.(±1,0)B.(±2,0)C.$(±2\sqrt{2},0)$D.(±4,0)

分析 由圓錐曲線C:$\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),平方相減可得普通方程,即可得出焦點(diǎn)坐標(biāo).

解答 解:由圓錐曲線C:$\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),平方相減可得:x2-y2=4,即$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1,
可得c2=8,解得c=2$\sqrt{2}$,
∴焦點(diǎn)坐標(biāo)是$(±2\sqrt{2},0)$.
故選:C.

點(diǎn)評 本題考查了參數(shù)方程化為普通方程、雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某中學(xué)有甲乙兩個文科班進(jìn)行數(shù)學(xué)考試,按照大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下列聯(lián)表:
優(yōu)秀非優(yōu)秀合計(jì)
20525
101525
合計(jì)302050
(1)用分層抽樣的方法在優(yōu)秀的學(xué)生中抽6人,其中甲班抽多少人?
(2)計(jì)算出統(tǒng)計(jì)量k2,能否有95%的把握認(rèn)為“成績與班級有關(guān)”?
下面的臨界值表代參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在四面體S-ABC中,SA⊥平面ABC,△ABC是邊長為3的正三角形,SA=2,則該四面體的外接球的表面積為( 。
A.B.12πC.16πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,圓O與直線x+$\sqrt{3}$y+2=0相切于點(diǎn)P,與x正半軸交于點(diǎn)A,與直線y=$\sqrt{3}$x在第一象限的交點(diǎn)為B.點(diǎn)C為圓O上任一點(diǎn),且滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,以x,y為坐標(biāo)的動點(diǎn)D(x,y)的軌跡記為曲線Γ.
(1)求圓O的方程及曲線Γ的方程;
(2)若兩條直線l1:y=kx和l2:y=-$\frac{1}{k}$x分別交曲線Γ于點(diǎn)E、F和M、N,求四邊形EMFN面積的最大值,并求此時的k的值.
(3)根據(jù)曲線Γ的方程,研究曲線Γ的對稱性,并證明曲線Γ為橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知三棱錐S-ABC所有頂點(diǎn)都在球O的表面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,則球O的表面積為( 。
A.$\frac{5}{2}$πB.C.D.$\frac{5}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn及使不等式${T_n}<\frac{k}{2014}$對一切n都成立的最小正整數(shù)k的值;
(3)設(shè)$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1,l∈{N^*})\\{b_n}(n=2l,n∈{N^*})\end{array}\right.$問是否存在m∈N+,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在凸四邊形ABCD中,角A=C=60°,AD=BC=2,且AB≠CD,則四邊形ABCD的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用“五點(diǎn)法”畫函數(shù)y=-2+sinx(x∈[0,2π])的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)的圖象向左移動$\frac{2π}{3}$之后的圖象與原圖象的對稱中心重合,則正實(shí)數(shù)ω的最小值是(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案