已知橢圓的離心率為,且曲線過(guò)點(diǎn)
(1)求橢圓C的方程.(2)已知直線x-y+m=0與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)不在圓內(nèi),求m的取值范圍.
【答案】分析:(1)根據(jù)離心率為,a2=b2+c2得到關(guān)于a和b的一個(gè)方程,曲線過(guò)點(diǎn),把點(diǎn)代入方程即可求得橢圓C的方程;
(2)直線x-y+m=0與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn),聯(lián)立直線和橢圓的方程,消元,得到關(guān)于x的一元二次方程,利用韋達(dá)定理求得AB的中點(diǎn)坐標(biāo),再根據(jù)該點(diǎn)不在圓內(nèi),得到該點(diǎn)到圓心的距離≥半徑,求得m的取值范圍.
解答:解:(1)∵,∴,∴a2=2b2
曲線過(guò),則
由①②解得,則橢圓方程為
(2)聯(lián)立方程,消去y整理得:3x2+4mx+2m2-2=0
則△=16m2-12(2m2-2)=8(-m2+3)>0,解得
,,
即AB的中點(diǎn)為
又∵AB的中點(diǎn)不在內(nèi),

解得,m≤-1或m≥1④
由③④得:<m≤-1或1≤m<
點(diǎn)評(píng):本小題主要考查直線與圓錐曲線等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及推理論證能力、運(yùn)算求解能力,直線與圓錐曲線相交問題,易忽視△>0,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案