等差數(shù)列{an}中,前十項(xiàng)和S10=100,后十項(xiàng)和S'10=220,所有項(xiàng)和Sn=880,則項(xiàng)數(shù)n=(  )
A、50B、55C、60D、65
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意和等差數(shù)列的性質(zhì)可得S10+S'10=10(a1+an),可得a1+an=32,代入求和公式可得n的方程,解方程可得.
解答: 解:由題意可得S10+S'10=10(a1+an)=100+220,
∴a1+an=32,又Sn=880,
∴Sn=
n
2
(a1+an)=16n=880,
∴n=55
故選:B
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司通過(guò)報(bào)紙和電視兩種方式做銷售某種商品的廣告,根據(jù)統(tǒng)計(jì)資料,銷售收入R(萬(wàn)元)與報(bào)紙廣告費(fèi)用x1(萬(wàn)元)及電視廣告費(fèi)用x2(萬(wàn)元)之間的關(guān)系有如下經(jīng)驗(yàn)公式:R=-2x12-x22+13x1+11x2-28.
(1)若提供的廣告費(fèi)用共為5萬(wàn)元,求怎樣分配廣告費(fèi)用才能使公司收益最大?(其中收益=銷售收入-廣告費(fèi)用);
(2)在廣告費(fèi)用不限的情況下,求該公司的最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(3a-2)x+6a-1,x<1
ax,x≥1
在R上 單調(diào)遞減,那么實(shí)數(shù)a的取 值范圍是( 。
A、(0,1)
B、(0,
2
3
C、(
3
8
,
2
3
D、(
3
8
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)g(x)=2x-
x+1
的值域?yàn)?div id="l4bikcu" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果等差數(shù)列{an}中,a3+a4+a5=12,那么a4等于( 。
A、4B、2C、6D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=-2sin(3x+
π
4
)的圖象的單調(diào)減區(qū)間、對(duì)稱軸及對(duì)稱點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B兩地的距離為10km,B、C兩地的距離為20km,現(xiàn)測(cè)得∠ABC=120°,則A、C兩地的距離為( 。
A、10km
B、
3
km
C、10
5
km
D、10
7
km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
ex+1,x<1
x2-1,x≥1
,則f[f(0)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次性隨機(jī)摸出2只球,則恰好有1只是白球的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案