判斷:由曲線|x|-|y|=1所圍成的圖形,其中不正確的是


  1. A.
    關(guān)于x軸對(duì)稱
  2. B.
    關(guān)于y軸對(duì)稱
  3. C.
    關(guān)于原點(diǎn)對(duì)稱
  4. D.
    關(guān)于y=x對(duì)稱
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對(duì)數(shù)的底).
(Ⅰ)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對(duì)數(shù)的底).
(Ⅰ)當(dāng)a=0時(shí),求f′(2);
(Ⅱ)若f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x-2y+m=0( m為確定的常數(shù))相切,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年撫順市普通高中應(yīng)屆畢業(yè)生高考模擬考試數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對(duì)數(shù)的底).

(Ⅰ)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;

(Ⅱ)在(Ⅰ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省模擬題 題型:解答題

已知函數(shù)f(x)=(x2+ax+a)e-x(a為常數(shù)),
(1)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(2)在(1)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0,3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案