將函數(shù)y=cos(x-
6
)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得圖象向左平移
π
3
個(gè)單位,則所得函數(shù)具有性質(zhì)是( 。
A、圖象關(guān)于直線(xiàn)x=
π
12
對(duì)稱(chēng)
B、圖象關(guān)于(
π
6
,0)
對(duì)稱(chēng)
C、圖象關(guān)于直線(xiàn)x=
4
3
π對(duì)稱(chēng)
D、圖象關(guān)于(
5
6
π,0)
對(duì)稱(chēng)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,余弦函數(shù)的對(duì)稱(chēng)性
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱(chēng)性,可得結(jié)論.
解答: 解:將函數(shù)y=cos(x-
6
)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)解析式為y=cos(
1
2
x-
6
),再將所得圖象向左平移
π
3
個(gè)單位,則所得函數(shù)y=cos(
1
2
(x+
π
3
)-
6
)=cos(
1
2
x-
3
),當(dāng)x=
4
3
π時(shí),y=1,所以圖象關(guān)于直線(xiàn)x=
4
3
π對(duì)稱(chēng);
故選C.
點(diǎn)評(píng):本題考查了三角函數(shù)圖象的平移變換,本題主要考查函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC=4,∠BAC=90°,D是BC的中點(diǎn),若向量
AM
=
1
4
AB
+m•
AC
,且
AM
的終點(diǎn)M在△ACD的內(nèi)部(不含邊界),則
AM
BM
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)給出的空間幾何體的三視圖,用斜二測(cè)畫(huà)法畫(huà)出它的直觀(guān)圖.(寫(xiě)出畫(huà)法,并保留作圖痕跡)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)-1.
(1)若點(diǎn)P(1,-
3
)在角α的終邊上,求f(
α
2
-
π
12
)的值;
(2)若x∈[-
π
6
,
π
3
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC的中線(xiàn)AF與中位線(xiàn)DE相交于點(diǎn)G,將△AED沿DE折起到△A′ED的位置.
(1)證明:BD∥平面A′EF;
(2)當(dāng)平面A′ED⊥平面BCED時(shí),證明:直線(xiàn)A′E與 BD不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足an+2an=2an+1(n∈N*),且a1=1,a2=2,則數(shù)列{an}的前2014項(xiàng)的乘積為(  )
A、22012
B、22013
C、22014
D、22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,點(diǎn)A為該拋物線(xiàn)上一點(diǎn),且∠OFA=120°(其中O為坐標(biāo)原點(diǎn)),則線(xiàn)段AF的中點(diǎn)M到y(tǒng)軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=
5
,AA1=3,M為線(xiàn)段BB1上的一動(dòng)點(diǎn),則當(dāng)AM+MC1最小時(shí),△AMC1的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)為Sn=n2+2n,則此數(shù)列的通項(xiàng)公式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案