【題目】函數(shù)的圖像上關(guān)于
軸對稱的點至少有3對,則實數(shù)
的取值范圍是( )
A. B.
C.
D.
【答案】C
【解析】
求出函數(shù)f(x)=sin(x)﹣1,(x<0)關(guān)于y軸對稱的解析式,利用數(shù)形結(jié)合即可得到結(jié)論.
若x>0,則﹣x<0,
∵x<0時,f(x)=sin(x)﹣1,
∴f(﹣x)=sin(x)﹣1=﹣sin(
x)﹣1,
則若f(x)=sin(x)﹣1,(x<0)關(guān)于y軸對稱,
則f(﹣x)=﹣sin(x)﹣1=f(x),
即y=﹣sin(x)﹣1,x>0,
設(shè)g(x)=﹣sin(x)﹣1,x>0
作出函數(shù)g(x)的圖象,
要使y=﹣sin(x)﹣1,x>0與f(x)=logax,x>0的圖象至少有3個交點,
則0<a<1且滿足g(10)<f(10),
即﹣2<loga10,
即loga10>logaa﹣2,
則10,
解得0<a,
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD所在的平面與等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,CD=DA=AF=FE=2,AB=4.
(1)求證:DF∥平面BCE;
(2)求二面角C—BF—A的正弦值;
(3)線段CE上是否存在點G,使得AG⊥平面BCF?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線
對稱,且圖象上相鄰兩個最高點的距離為
.
(1)求和
的值;
(2)當(dāng)時,求函數(shù)
的最大值和最小值;
(3)設(shè),若
的任意一條對稱軸與x軸的交點的橫坐標不屬于區(qū)間
,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
(1)若不等式的解集是
,求此時
的解析式;
(2)在(1)的條件下,設(shè)函數(shù),若
在區(qū)間
上是單調(diào)遞增函數(shù),求實數(shù)
的取值范圍;
(3)是否存在實數(shù)使得函數(shù)
在
上的最大值是
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求證:
(2)若函數(shù)的圖象與直線
沒有交點,求實數(shù)
的取值范圍;
(3)若函數(shù),則是否存在實數(shù)
,使得
的最小值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線(
)關(guān)于直線
對稱的直線為
,直線
,
與橢圓
分別交于點A,M和A,N,記直線
的斜率為
.
(1)求的值;
(2)當(dāng)變化時,直線
是否恒過定點?若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有編號為1,2,3…n的n個學(xué)生,入座編號為1,2,3…n的n個座位,每個學(xué)生規(guī)定坐一個座位, 設(shè)學(xué)生所坐的座位號與該生的編號不同的學(xué)生人數(shù)為, 已知
時, 共有6種坐法.
(1)求的值;
(2)求隨機變量的概率分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線C1的參數(shù)方程為 (θ為參數(shù)),將曲線C1上所有點的橫坐標伸長為原來的2倍,縱坐標伸長為原來的
倍,得到曲線C2.以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(cosθ-2sinθ)=6.
(1)求曲線C2和直線l的普通方程.
(2)P為曲線C2上任意一點,求點P到直線l的距離的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com