【題目】已知向量 ,函數(shù)f(x)= +2.
(1)求函數(shù)f(x)的最小正周期;
(2)設(shè)銳角△ABC內(nèi)角A,B,C所對的邊分別為a,b,c,若f(A)=2, ,求角A和邊c的值.
【答案】
(1)解: f(x)= +2=
=
=
=
∴f(x)的最小正周期
(2)解:由(1)知 ,解得 .
∵ ,
∴ ,∴ .
解法一:由余弦定理得 =c2﹣3c+9=7.
解得c=1或c=2.
若c=1,則 <0,
∴B為鈍角,這與△ABC為銳角三角形不符,c≠1
∴c=2.
解法二:由正弦定理得 ,解得
∵B是銳角,∴ ,
∵C=π﹣(A+B),
∴ ,
∴ ,解得c=2.
【解析】(1)利用平面向量數(shù)量積的運算,三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)= ,利用三角函數(shù)的周期公式即可得解.(2)由(1)知可得 ,結(jié)合A的范圍可求 ,解法一:由余弦定理解得c的值,解法二:由正弦定理解得sinB,由B是銳角,可求cosB,利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sinC,根據(jù)正弦定理即可解得c的值.
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校今年準(zhǔn)備報考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12,則報考飛行員的總?cè)藬?shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函數(shù)f(x)圖象上的任意兩條對稱軸之間距離的最小值是 .
(1)求函數(shù)f(x)的解析式;
(2)若f( )= ( <α< ),求cos(α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從高三學(xué)生中抽取50名同學(xué)參加數(shù)學(xué)競賽,成績的分組及各組的頻數(shù)如下(單位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖和頻率分布折線圖;
(3)估計成績在[60,90)分的學(xué)生比例;
(4)估計成績在85分以下的學(xué)生比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn , bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Dn;
(3)設(shè)cn=ansin2 ,求數(shù)列{cn}的前2n項和T2n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E,F(xiàn)為CD上任意兩點,且EF的長為定值b,則下面的四個值中不為定值的是( )
A.點P到平面QEF的距離
B.三棱錐P﹣QEF的體積
C.直線PQ與平面PEF所成的角
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得, , , ,其中為抽取的第個零件的尺寸, .
(1)求 的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小(若,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.
(。⿵倪@一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進行檢查?
(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本 的相關(guān)系數(shù), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項和為, 是首項為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項公式;
(Ⅱ)求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com