分析 (1)利用代入法求點M的軌跡方程.
(2)當直線L的斜率不存在時,直線L:x=0,滿足條件,當直線L的斜率存在時,設(shè)直線L:y=kx-3,聯(lián)立直線與圓的方程,利用韋達定理,可求出滿足條件的k值,進而得到直線L的方程,最后綜合討論結(jié)果,可得答案.
解答 解:(1)設(shè)M(x,y),動點P(x1,y1),
由中點的坐標公式解得x1=2x-4,y1=2y,
由x12+y12=36,得(2x-4)2+(2y)2=36,
∴點M的軌跡方程是(x-2)2+y2=9…(4分)
(2)當直線L的斜率不存在時,直線L:x=0,與圓M交于$A(0,\sqrt{5}),B(0,-\sqrt{5})$,
此時x1=x2=0,不合題意.…(6分)
當直線L的斜率存在時,設(shè)直線L:y=kx-3,則$\left\{{\begin{array}{l}{y=kx-3}\\{{{(x-2)}^2}+{y^2}=9}\end{array}}\right.$,
消去y,得(1+k2)x2-(4+6k)x+4=0,${x_1}+{x_2}=\frac{4+6k}{{1+{k^2}}}$,${x_1}{x_2}=\frac{4}{{1+{k^2}}}$
由已知${x_1}^2+{x_2}^2=\frac{21}{2}{x_1}{x_2}⇒7{k^2}-24k+17=0⇒k=1,k=\frac{17}{7}$,經(jīng)檢驗△>0.
綜上:直線L為:x-y-3=0,17x-7y-21=0.…(12分)
點評 本題考查的知識點是直線與圓的位置關(guān)系,圓的標準方程,是直線與圓的綜合應用,難度中檔.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com