已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求
AD
EB
的最小值.
分析:(Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)兩點(diǎn)間距離公式和點(diǎn)到直線的距離公式,列方程,并化解即可求得動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)出直線l1的方程,理想直線和拋物線的方程,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理,求出兩根之和和兩根之積,同理可求出直線l2的方程與拋物線的交點(diǎn)坐標(biāo),代入
AD
EB
利用基本不等式求最值,即可求得其的最小值.
解答:解:(Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),由題意得
(x-1)2+y2
- |x|=1
,
化簡(jiǎn)得y2=2x+2|x|.
當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0,
所以動(dòng)點(diǎn)P的軌跡C的方程為y2=4x(x≥0)和y=0(x<0).
(Ⅱ)由題意知,直線l1的斜率存在且不為零,設(shè)為k,則l1的方程為y=k(x-1).
y=k(x-1)
y2=4x
,得k2x2-(2k2+4)x+k2=0.
設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),則x1+x2=2+
4
k2
,x1x2=1.
∵l1⊥l2,∴直線l2的斜率為-
1
k

設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1.
AD
EB
=(
AF
+
FD
)•(
EF
+
FB
)
=
AF
EF
+
AF
FB
+
FD
EF
+
FD
FB

=|
AF|
•|
FB
|+|
FD|
•|
EF|
=(x1+1)(x2+1)+(x3+1)(x4+1)
=x1x2+(x1+x2)+1+x3x4+x3+x4+1
1+2+
4
k2
+1+1+2+4k2+1=8+4(k2+
1
k2
)≥8+4×2=16,
當(dāng)且僅當(dāng)k2=
1
k2
,即k=±1時(shí),
AD
EB
的最小值為16.
點(diǎn)評(píng):此題是個(gè)難題.考查代入法求拋物線的方程,以及直線與拋物線的位置關(guān)系,同時(shí)也考查了學(xué)生觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且
MA
=λ1
AF
,
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動(dòng)點(diǎn)P到定點(diǎn)F(2,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于2.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作傾斜角為60°的直線l與軌跡C交于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為軌跡C上一點(diǎn),若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭二模)已知平面內(nèi)一動(dòng)點(diǎn) P到定點(diǎn)F(0,
1
2
)
的距離等于它到定直線y=-
1
2
的距離,又已知點(diǎn) O(0,0),M(0,1).
(1)求動(dòng)點(diǎn) P的軌跡C的方程;
(2)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),以 M P為直徑作圓,求該圓截直線y=
1
2
所得的弦長(zhǎng);
(3)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),過點(diǎn) P作x軸的垂線交x軸于點(diǎn) A,過點(diǎn) P作(1)中的軌跡C的切線l交x軸于點(diǎn) B,問:是否總有 P B平分∠A PF?如果有,請(qǐng)給予證明;如果沒有,請(qǐng)舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到軸的距離少1.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線點(diǎn),且

,,

的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且
MA
=λ1
AF
,
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案