(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿(mǎn)足A=2B.
(1)當(dāng)時(shí),求△ABC的三邊長(zhǎng)及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.
【答案】分析:(1)根據(jù)三角形三邊長(zhǎng)為連續(xù)的正整數(shù),設(shè)中間的邊長(zhǎng)為n,表示出前一個(gè)和后一個(gè)邊長(zhǎng),由A=2B,利用內(nèi)角和定理表示出C,把A=2B代入可用B表示出C,由B的范圍,得到A的范圍,可得到C的范圍,進(jìn)而得到三個(gè)角的大小關(guān)系,根據(jù)大角對(duì)大邊可得n+1為角A的對(duì)邊,n-1為B的對(duì)邊,利用正弦定理列出關(guān)系式,把A=2B代入并利用二倍角的正弦函數(shù)公式化簡(jiǎn),可表示出cosB,再利用余弦定理表示出cosB,兩者相等列出關(guān)于n的方程,求出方程的解即可得到n的值,進(jìn)而求出cosB的值,由B為銳角,利用反函數(shù)定義即可表示出B;
(2)由(1)求出cosB的值及B為銳角,利用同角三角函數(shù)間的基本關(guān)系求出sinB的值,再由a與c的值,利用三角形的面積公式即可求出三角形的面積.
解答:解:(1)設(shè)△ABC的三邊為n-1,n,n+1(n≥3,n∈N),
由題設(shè)A=2B得:C=π-A-B=π-3B,
由題意,得,
可得,
從而A>C>B,得角B所對(duì)的邊為n-1,角A所對(duì)的邊為n+1,(4分)
故有
,又

解得n=5,
故△ABC的三邊長(zhǎng)為4,5,6,(7分)
,從而;(10分)
(2)由,得到cosB=,又B為銳角,
,又a=6,c=5,
.(14分)
點(diǎn)評(píng):此題考查了正弦、余弦定理,二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•盧灣區(qū)二模)(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿(mǎn)足A=2B.
(1)當(dāng)
π
5
<B<
π
4
時(shí),求△ABC的三邊長(zhǎng)及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年青島一模文)(12分)已知向量

,設(shè)函數(shù).

(Ⅰ)求函數(shù)的最大值;

(Ⅱ)在銳角三角形中,角、、的對(duì)邊分別為、,, 且的面積為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿(mǎn)足A=2B.
(1)當(dāng)數(shù)學(xué)公式時(shí),求△ABC的三邊長(zhǎng)及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:盧灣區(qū)二模 題型:解答題

(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿(mǎn)足A=2B.
(1)當(dāng)
π
5
<B<
π
4
時(shí),求△ABC的三邊長(zhǎng)及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案