【題目】設拋物線Cy2=4x焦點為F,直線lC交于A,B兩點.

(1)若l過F且斜率為1,求|AB|;

(2)若不過坐標原點O,且OAOB,證明:直線l過定點.

【答案】(1)8(2)見證明

【解析】

(1)由題意寫出直線的方程,與拋物線方程聯(lián)立消去y,得關于x的一元二次方程,利用根與系數(shù)的關系和拋物線的定義求出|AB|的值;

(2)可設直線的方程為x=my+a,A(x1,y1),B(x2,y2),由得關于y的一元二次方程,利用根與系數(shù)的關系和平面向量的坐標運算法則求出a的值,再判斷直線l恒過定點.

(1)由題意,拋物線C:y2=4x的焦點為F(1,0),直線l過點F且斜率為1,

的方程為y=x-1,設A(x1,y1),B(x2,y2),

,消去y,得x2-6x+1=0,

又△=(-6)2-4×1×1=32>0,且x1+x2=6,

∴|AB|=x1+x2+2=8;

(2)直線的斜率不為0時,可設直線的方程為x=my+a(a≠0),

設A(x1,y1),B(x2,y2);

,消去x,得y2-4my-4a=0,則y1y2=-4a;

又x1=,x2=,∴x1x2===a2

又∵OA⊥OB,∴=x1x2+y1y2=0,即a2-4a=0,

又∵a≠0,∴a=4,

∴直線l:x=my+4恒過定點M(4,0).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結論中正確的個數(shù)是

(1)對于命題使得,則都有;

(2)已知,則

(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;

(4)“”是“”的充分不必要條件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列的公差不為0,是其前項和,給出下列命題:

①若,且,則都是中的最大項;

②給定,對一切,都有

③若,則中一定有最小項;

④存在,使得同號.

其中正確命題的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

在平面直角坐標系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求的極坐標方程;

(2)若直線為參數(shù))與相交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.

1)求函數(shù)的解析式;

2)在中,角、所對的邊分別為、、,且,,若角滿足,求的取值范圍;

3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應的函數(shù)記作,已知常數(shù),,且函數(shù)內(nèi)恰有個零點,求常數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=2,an+1=2(Sn+n+1)(nN*),令bn=an+1.

(1)求數(shù)列{bn}的通項公式;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是  

A. 利潤最高的月份是2月份,且2月份的利潤為40萬元

B. 利潤最低的月份是5月份,且5月份的利潤為10萬元

C. 收入最少的月份的利潤也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1996年嘉祥被國家命名為“中國石雕之鄉(xiāng)”,20086月,嘉祥石雕登上了國家文化部公布的“第二批國家級非物質文化遺產(chǎn)名錄”,嘉祥石雕文化產(chǎn)業(yè)園被國家文化部命名為“國家級文化產(chǎn)業(yè)示范基地”,近年來,嘉祥石雕產(chǎn)業(yè)發(fā)展十分迅猛,產(chǎn)品暢銷全國各地及美國、日本、東南亞國家和地區(qū),嘉祥某石雕廠為嚴把質量關,對制作的每件石雕都請3位行家進行質量把關,質量把關程序如下:(i)若一件石雕3位行家都認為質量過關,則該石雕質量為優(yōu)秀級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該石雕質量為良好級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該石雕需返工重做.已知每一次質量把關中一件石雕被1位行家認為質量不過關的概率均為,且每1位行家認為石雕質量是否過關相互獨立.則一件石雕質量為優(yōu)秀級的概率為______ ;一件石雕質量為良好級的概率為______.

查看答案和解析>>

同步練習冊答案