【題目】已知集合,對于,,定義與的差為;與之間的距離為.
(1)若,試寫出所有可能的,;
(2),證明:;
(3),三個數(shù)中是否一定有偶數(shù)?證明你的結(jié)論.
【答案】(1)見解析;(2)見解析;(3)一定有偶數(shù),理由見解析
【解析】
(1)由題意結(jié)合新概念可直接得解;
(2)先證明、時,均有,由新概念運算即可得證;
(3)設(shè),,,由(2)可得,,,設(shè)是使成立的的個數(shù),即可得,即可得解.
(1)由題意可得,所有滿足要求的,為:
,;
,;
,;
,.
(2)證明:令,,,
對,
當(dāng)時,有;
當(dāng)時,有.
所以
.
(3),,,,,三個數(shù)中一定有偶數(shù).
理由如下:
設(shè),,,
,,,
記,由(2)可知: ,
,,
所以中1的個數(shù)為,中1的個數(shù)為.
設(shè)是使成立的的個數(shù),則.
由此可知,,,三個數(shù)不可能都是奇數(shù),
即,,三個數(shù)中一定有偶數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日,濟(jì)南軌道交通號線試運行,濟(jì)南軌道交通集團(tuán)面向廣大市民開展“參觀體驗,征求意見”活動,市民可以通過濟(jì)南地鐵APP搶票,小陳搶到了三張體驗票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機(jī)選擇兩位與自己一起去參加體驗活動,則小王被選中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)X~N(1,σ2),其正態(tài)分布密度曲線如圖所示,且P(X≥3)=0.0228,那么向正方形OABC中隨機(jī)投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為( )
(附:隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A. 6038 B. 6587 C. 7028 D. 7539
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語水平測試,所得成績(單位:分)統(tǒng)計結(jié)果用莖葉圖記錄如下:
(Ⅰ)試估計在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;
(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線與軸平行,求;
(2)已知在上的最大值不小于,求的取值范圍;
(3)寫出所有可能的零點個數(shù)及相應(yīng)的的取值范圍.(請直接寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)是函數(shù)的極值點,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,,若,,使不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,對該幾何體有如下描述:
①四個側(cè)面都是直角三角形;
②最長的側(cè)棱長為;
③四個側(cè)面中有三個側(cè)面是全等的直角三角形;
④外接球的表面積為24π.
其中正確的描述為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù),為直線的傾斜角).以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩個坐標(biāo)系下取相同的長度單位.
(1)當(dāng)時,求直線的極坐標(biāo)方程;
(2)若曲線和直線交于,兩點,且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)
纖維長度 | |||||
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.
甲地 | 乙地 | 總計 | |
長纖維 | |||
短纖維 | |||
總計 |
附:(1);
(2)臨界值表;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com