【題目】已知,函數(shù)是自然對數(shù)的底數(shù)).

)若,證明:曲線沒有經(jīng)過點(diǎn)的切線;

)若函數(shù)在其定義域上不單調(diào),求的取值范圍;

【答案】(Ⅰ)見解析(Ⅱ)

【解析】

)假設(shè)存在切線經(jīng)過,設(shè)切點(diǎn)為,利用切線方程推出矛盾得到證明.

)函數(shù)在其定義域上不單調(diào),等價于有變號零點(diǎn),取導(dǎo)數(shù)為0,參數(shù)分離,設(shè)新函數(shù)利用函數(shù)的單調(diào)性求取值范圍.

解:(Ⅰ)因?yàn)?/span>,所以,此時

設(shè)曲線在點(diǎn)處的切線經(jīng)過點(diǎn)

則曲線在點(diǎn)處的切線

所以 化簡得:

,則,

所以當(dāng)時,為減函數(shù),

當(dāng)時, , 為增函數(shù),

所以,所以無解

所以曲線的切線都不經(jīng)過點(diǎn)

(Ⅱ)函數(shù)的定義域?yàn)?/span>,因?yàn)?/span>,

所以在定義域上不單調(diào),等價于有變號零點(diǎn),

,得,令

因?yàn)?/span>,令,

所以上的減函數(shù),又,故1的唯一零點(diǎn),

當(dāng),遞增;

當(dāng),,,遞減;

故當(dāng)時,取得極大值且為最大值,所以,即的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)用表示中的最大值,設(shè)函數(shù),討論零點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;

2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】疫情期間,一同學(xué)通過網(wǎng)絡(luò)平臺聽網(wǎng)課,在家堅持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進(jìn)行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機(jī)選取了名用戶,統(tǒng)計出年齡分布和用戶付費(fèi)金額(金額為整數(shù))情況如下圖.

有聲書公司將付費(fèi)高于元的用戶定義為“愛付費(fèi)用戶”,將年齡在歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有的“年輕用戶”是“愛付費(fèi)用戶”.

(1)完成下面的列聯(lián)表,并據(jù)此資料,能否有的把握認(rèn)為用戶“愛付費(fèi)”與其為“年輕用戶”有關(guān)?

愛付費(fèi)用戶

不愛付費(fèi)用戶

合計

年輕用戶

非年輕用戶

合計

(2)若公司采用分層抽樣方法從“愛付費(fèi)用戶”中隨機(jī)選取人,再從這人中隨機(jī)抽取人進(jìn)行訪談,求抽取的人恰好都是“年輕用戶”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時,求直線l與圓O公共點(diǎn)的一個極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng) 時,設(shè),討論的導(dǎo)函數(shù)的單調(diào)性;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一動點(diǎn),軸,軸上的射影分別為點(diǎn),,動點(diǎn)滿足,記動點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)過點(diǎn)的直線與曲線交于,兩點(diǎn),判斷以為直徑的圓是否過定點(diǎn)?求出定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值;

(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

同步練習(xí)冊答案