6.已知集合A={x|a-1<x<2a+1},B={x|0<x<1}.
(Ⅰ)若0<a<1,求A∩B;
(Ⅱ)若A∩B=∅,求實數(shù)a.

分析 (Ⅰ)當0<a<1,求出集合A,由此利用交集定義能求出A∩B.
(Ⅱ)由交集性質(zhì)得2a+1≥0或a-1≤1或a-1≥2a+1,由此能求出數(shù)a的取值范圍.

解答 解:(Ⅰ)∵0<a<1,
∴集合A={x|a-1<x<2a+1}={x|-1<x<3},B={x|0<x<1}.
∴A∩B={x|0<x<1}.
(Ⅱ)∵集合A={x|a-1<x<2a+1},B={x|0<x<1},
且A∩B=∅,
∴2a+1≥0或a-1≤1或a-1≥2a+1,
解得a$≥-\frac{1}{2}$或a≤2或a≤-2.
∴實數(shù)a的取值范圍是$({\;-∞\;,\;-\frac{1}{2}\;}]\;∪\;[{\;2\;,\;+∞\;})$.

點評 本題考查交集的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意交集性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.在直角坐標系xoy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),以原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為$ρ=2cos(θ+\frac{π}{4})$
(1)判斷曲線C1與曲線C2的位置關(guān)系;
(2)設點M(x,y)為曲線C2上任意一點,求2x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將函數(shù)f(x)=cos(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個單位長度得到函數(shù)g(x)的圖象,若函數(shù)g(x)為奇函數(shù),則φ的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=|x|+2|x|,且滿足f(a-1)<f(2),則實數(shù)a的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)的定義域為R,且f(x)+2f(-x)=x2-x,則f(x)=$\frac{1}{3}$x2+x,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某烹飪學院為了弘揚中國傳統(tǒng)的飲食文化,舉辦了一場由在校學生參加的廚藝大賽.組委會為了了解本次大賽參賽學生的成績情況,從參賽學生中抽取了n名學生的成績(滿分100分)作為樣本,將所得數(shù)據(jù)經(jīng)過分析整理后畫出了頻率分布直方圖和莖葉圖,其中莖葉圖受到了污損,請據(jù)此解答下列問題:
(Ⅰ)求樣本容量n和頻率分布直方圖中a的值;
(Ⅱ)規(guī)定大賽成績在[80,90)的學生為廚霸,在[90,100]的學生為廚神.現(xiàn)從被稱為廚霸、廚神的學生中隨機抽取2人去參加校際之間舉辦的廚藝大賽,求所抽取的2人中至少有1人是廚神的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若數(shù)列{an}是首項為2,公比為4的等比數(shù)列,設bn=log2an,Tn為數(shù)列{bn}的前n項和.則T100=10000.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.解關(guān)于x的不等式$\frac{ax-2}{x+1}$>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在直三棱柱ABC-A1B1C1中,AB⊥BC,AC=5,則直三棱柱內(nèi)切球的表面積的最大值為25(3-3$\sqrt{2}$)π.

查看答案和解析>>

同步練習冊答案