分析 通過已知條件知道,繞AB旋轉(zhuǎn)一周形成的封閉幾何體是上面是圓錐,下面是圓柱的圖形.所以該幾何體的表面積便是圓錐、圓柱的表面積和底面圓的面積的和,該幾何體的體積便是圓錐、圓柱體積的和,所以根據(jù)已知的邊的長度及圓錐、圓柱的表面積公式,及體積公式即可求出該幾何體的表面積和體積.
解答 解:依題旋轉(zhuǎn)后形成的幾何體為上部為圓錐,下部為圓柱的圖形,如下圖所示:
其表面積S=圓錐側(cè)面積+圓柱側(cè)面積+圓柱底面積;
∴S=4$\sqrt{2}$π+8π+4π=12π+4$\sqrt{2}$π;
其體積V=圓錐體積+圓柱體積;
∴V=$\frac{8}{3}$π+8π=$\frac{32}{3}$π.
點(diǎn)評 考查對由平面圖形繞一直線旋轉(zhuǎn)之后形成的立體圖形的判斷,以及圓錐、圓柱的表面積公式,體積公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)的極大值就是函數(shù)的最大值 | |
B. | 函數(shù)的極小值就是函數(shù)的最小值 | |
C. | 函數(shù)的最值一定是極值 | |
D. | 閉區(qū)間上的連續(xù)函數(shù)一定存在最大值與最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $-\frac{9}{16}$ | C. | $\frac{9}{16}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com