【題目】已知函數(shù).
(1)當(dāng)時,判斷并證明函數(shù)在上單調(diào)性。
(2)當(dāng)時,若關(guān)于的方程在上有解,求實數(shù)的取值范圍。
【答案】(1)單調(diào)遞增(2)
【解析】試題分析:(1)設(shè),比較和0的大小,從而得在上的單調(diào)性
(2)首先時可證明函數(shù)為奇函數(shù),且在上單調(diào)遞增,從而轉(zhuǎn)化為在上有解,進(jìn)而轉(zhuǎn)化為函數(shù)與函數(shù)有交點,所以,即
試題解析:(1)當(dāng)時,函數(shù)在上單調(diào)遞增,證明如下:
設(shè),則
因為,所以, ,又
所以即
所以,函數(shù)在上單調(diào)遞增
(2)當(dāng)時, ,定義域為
所以,函數(shù)為奇函數(shù)
因為
所以
由(1)知, 時,函數(shù)在上單調(diào)遞增
所以在上有解,
所以函數(shù)與函數(shù)有交點
所以,即
所以實數(shù)的取值范圍為
點晴:證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差: ,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(fù)(要注意說理的充分性),必要時要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),對x∈R都有f(x+4)=f(x)+f(2)成立.當(dāng)x1,x2∈[0,2],且x1≠x2時,都有<0,給出下列命題:
①f(2)=0;
②直線x=-4是函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[-4,4]上有四個零點;
④f(2 014)=0.
其中所有正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】滬昆高速鐵路全線2016年12月28日開通運(yùn)營.途經(jīng)鷹潭北站的、兩列列車乘務(wù)組工作人員為了了解乘坐本次列車的乘客每月需求情況,分別在兩個車次各隨機(jī)抽取了100名旅客進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果,繪制了月乘車次數(shù)的頻率分布直方圖和頻數(shù)分布表.
(1)若將頻率視為概率,月乘車次數(shù)不低于15次的稱之為“老乘客”,試問:哪一車次的“老乘客”較多,簡要說明理由;
(2)已知在次列車隨機(jī)抽到的50歲以上人員有35名,其中有10名是“老乘客”,由條件完成列聯(lián)表,并根據(jù)資料判斷,是否有的把握認(rèn)為年齡與乘車次數(shù)有關(guān),說明理由.
老乘客 | 新乘客 | 合計 | |||||||
50歲以上 | |||||||||
50歲以下 | |||||||||
合計 | |||||||||
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |||||
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | |||||
附:隨機(jī)變量(其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有30名男職員和20名女職員,公司進(jìn)行了一次全員參與的職業(yè)能力測試,現(xiàn)隨機(jī)詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,
22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )
A. 這種抽樣方法是分層抽樣
B. 這種抽樣方法是系統(tǒng)抽樣
C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差
D. 該測試中公司男職員的測試成績的平均數(shù)小于女職員的測試成績的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班進(jìn)行教改實驗.為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(1)當(dāng)時,求在區(qū)間上最大值和最小值;
(2)如果方程有三個不相等的實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過點的直線與分別交于(均異于點),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應(yīng)年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預(yù)報的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com