5.某小學(xué)對(duì)五年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已測(cè)得五年級(jí)一班30名學(xué)生的跳遠(yuǎn)成績(jī)(單位:cm),用莖葉圖統(tǒng)計(jì)如圖,男生成績(jī)?cè)?75cm以上(包括175cm)定義為合格,成績(jī)?cè)?75cm以下(不含175cm)定義為“不合格”;女生成績(jī)?cè)?65以上(包括165cm)定義為“合格”,成績(jī)?cè)?65cm以下(不含165cm)定義為“不合格”.
(1)求男生跳遠(yuǎn)成績(jī)的中位數(shù).
(2)根據(jù)男女生的不同,用分層抽樣的方法從該班學(xué)生中抽取1個(gè)容量為5的樣本,求抽取的5人中女生的人數(shù).
(3)以此作為樣本,估計(jì)該校五年級(jí)學(xué)生體質(zhì)的合格率.

分析 (1)男生跳遠(yuǎn)成績(jī)數(shù)據(jù)為偶數(shù)個(gè),能求出中位數(shù).
(2)女生總?cè)藬?shù)為18人,所占比例為$\frac{18}{30}=\frac{3}{5}$,由此能求出女生應(yīng)抽取的人數(shù).
(3)由莖葉圖求出樣本的合格率,由此能求出該校五年級(jí)學(xué)生體質(zhì)的合格率.

解答 解:(1)男生跳遠(yuǎn)成績(jī)數(shù)據(jù)為偶數(shù)個(gè),
∴中位數(shù)為$\frac{177+179}{2}=178$(cm).…(4分)
(2)女生總?cè)藬?shù)為18人,所占比例為$\frac{18}{30}=\frac{3}{5}$,
∴女生應(yīng)抽取的人數(shù)為$5•\frac{3}{5}=3$人.…(8分)
(3)由莖葉圖可知,
樣本中男生有8人合格,女生有10人合格.
樣本的合格率為$\frac{8+10}{30}=0.6$=60%.
∴該校五年級(jí)學(xué)生體質(zhì)的合格率估計(jì)為60%.…(12分)

點(diǎn)評(píng) 本題考查中位數(shù)、頻數(shù)、合格率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意莖葉圖性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1).且當(dāng)x∈[-1,0]時(shí),f(x)=-x2+1,如果函數(shù)g(x)=f(x)-a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且滿足an+2Sn=2n+2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{3({a_1}-2)({a_2}-2)}}+\frac{1}{{{3^2}({a_2}-2)({a_3}-2)}}+…+\frac{1}{{{3^n}({a_n}-2)({a_{n+1}}-2)}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.高二年級(jí)有500名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測(cè)試中的數(shù)學(xué)成績(jī),制成如下頻率分布表:
分組頻數(shù)頻率
[85,95)0.025
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合計(jì)
(1)根據(jù)圖表,①②③處的數(shù)值分別為1、0.1、1;
(2)在所給的坐標(biāo)系中畫出[85,155]的頻率分布直方圖;
(3)根據(jù)題中信息估計(jì)總體落在[125,155]中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列四個(gè)命題:
①定義在R上的函數(shù)f(x)滿足f(-2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(-x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個(gè)函數(shù)的解析式為y=x2,它的值域?yàn)閧0,1,4},這樣的不同函數(shù)共有9個(gè)
④設(shè)函數(shù)f(x)=lnx,則對(duì)于定義域中的任意x1,x2(x1≠x2),恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,
其中為真命題的序號(hào)有②③④(填上所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓x2+y2=r2(r為正常數(shù))上任一點(diǎn)P到M$(\frac{r}{3}$,0)及N(a,0)的距離之比為常數(shù)k,則a=3r,k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)是F2(2,0),離心率e=2.
(1)求雙曲線C的方程;
(2)若斜率為1的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M,N,線段MN的垂直平分線與坐標(biāo)軸圍成的三角形的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱錐O-ABC中,平面OAC⊥平面OAB,OC⊥OA,且OA=OB=OC=2,M為△ABC內(nèi)部一點(diǎn),點(diǎn)P在OM的延長(zhǎng)線上,且OM=$\frac{1}{3}$MP,PA=PB.
(Ⅰ)證明:AB⊥平面POC
(Ⅱ)已知∠AOB=45°,求三棱錐A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲、乙兩地相距400千米,一汽車從甲地勻速行駛到乙地,速度不得超過100千米/時(shí).已知該汽車每小時(shí)的運(yùn)輸成本t(元)關(guān)于速度x(千米/時(shí))的函數(shù)關(guān)系式是t=$\frac{1}{19200}$x4-$\frac{1}{160}$x3+15x.
(1)當(dāng)汽車以60千米/時(shí)的速度勻速行駛時(shí),全程運(yùn)輸成本為多少元?
(2)為使全程運(yùn)輸成本最少,汽車應(yīng)以多少速度行駛?并求出此時(shí)運(yùn)輸成本的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案