15.在△ABC中,角A,B,C所對的邊分別為a,b,c,根據(jù)下列條件解三角形,其中有兩個解的是( 。
A.a=5,b=5,A=50°B.a=3,b=4,A=30°
C.a=5,b=10,A=30°D.a=12,b=10,A=135°

分析 由正弦定理可得sinB=$\frac{b•sinA}{a}$,根據(jù)條件求得sinB的值,根據(jù)b與a的大小判斷角B的大小,從而判斷△ABC的解的個數(shù).

解答 解:對于A:a=5,b=5,A=50°,由b=a,故B=A=50°,C=80°,故△ABC有唯一解,
對于B:a=3,b=4,A=30°,有sinB=$\frac{b•sinA}{a}$=$\frac{4×\frac{1}{2}}{3}$=$\frac{2}{3}$,又b>a,故B>A,故B可以是銳角,也可以是鈍角,故△ABC有兩個解,
對于C:a=5,b=10,A=30°,有sinB=$\frac{b•sinA}{a}$=$\frac{10×\frac{1}{2}}{5}$=1,B為直角,故△ABC有唯一解,
對于D:a=12,b=10,A=135°,有sinB=$\frac{b•sinA}{a}$=$\frac{10×\frac{\sqrt{2}}{2}}{12}$=$\frac{5\sqrt{2}}{12}$,又b<a,故B<A,故B為銳角,故△ABC有唯一解.
故選:B.

點評 此題屬于解三角形的題型,涉及的知識有:正弦定理,三角形的邊角關系,正弦函數(shù)的圖象與性質(zhì),以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)為一次函數(shù),其圖象經(jīng)過點(2,4),且${∫}_{0}^{1}$f(x)dx=3,則函數(shù)f(x)的解析式為f(x)=$\frac{2}{3}$x+$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx,g(x)=(x-1)f′(x),其中f′(x)是f(x)的導函數(shù).
(Ⅰ)求曲線y=f(x)在點(e,1)處的切線方程;
(Ⅱ)若f(x)≥ag(x)在[3,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$不共線,且向量$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$,$\overrightarrow{AC}$=n$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若A,B,C三點共線,則實數(shù)m,n(  )
A.mn=1B.mn=-1C.m+n=1D.m+n=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖1,在等腰直角三角形ABC中,∠B=90°,將△ABC沿中位線DE翻折得到如圖2所示的空間圖形,使二面角A-DE-C的大小為θ(0<θ<$\frac{π}{2}$).

(1)求證:平面ABD⊥平面ABC;
(2)若θ=$\frac{π}{3}$,求直線AE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若集合A={x|x2≤4},B={x|x≥0}.則A∩B=( 。
A.{x|0≤x≤2}B.{x|x≥-2}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(-1,k),$\overrightarrow{a}⊥\overrightarrow$,則|$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設f(x)為可導函數(shù),且f′(2)=$\frac{1}{2}$,求$\underset{lim}{h→0}$$\frac{f(2-h)-f(2+h)}{h}$的值(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在平面直角坐標系xOy中,不等式組$\left\{\begin{array}{l}x≥1\\ y≥x\\ x+y-3≤0\end{array}\right.$所表示的平面區(qū)域的面積為( 。
A.$\frac{2}{9}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案