【題目】已知橢圓C: (>b>0)的離心率為,A(,0), B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點(diǎn),直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N.求證:|AN|·|BM|為定值.
【答案】(1) (2)見解析.
【解析】試題分析:
運(yùn)用橢圓的離心率公式和三角形的面積公式,結(jié)合的關(guān)系,解方程可得,進(jìn)而得到橢圓方程。
設(shè)橢圓上點(diǎn)可得,求出直線的方程,令求得,求出直線的方程,令求得,化簡(jiǎn)整理,即可得到的定值
(1)解 由已知=,ab=1.
又a2=b2+c2,解得a=2,b=1,c=.
∴橢圓方程為+y2=1.
(2)證明 由(1)知,A(2,0),B(0,1).
設(shè)橢圓上一點(diǎn)P(x0,y0),則+y=1.
當(dāng)x0≠0時(shí),直線PA方程為y=(x-2),
令x=0得yM=.
從而|BM|=|1-yM|=.
直線PB方程為y=x+1.
令y=0得xN=.
∴|AN|=|2-xN|=.
∴|AN|·|BM|=·
=·
=
==4.
當(dāng)x0=0時(shí),y0=-1,|BM|=2,|AN|=2,
∴|AN|·|BM|=4.
故|AN|·|BM|為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span> )
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)ω>0,函數(shù)y=sin(ωx+ )+2的圖象向右平移 個(gè)單位后與原圖象重合,則ω的最小值是( )
A.
B.
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足,對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表達(dá)式;
(3)在(2)的條件下,設(shè)g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y= 的上方,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com