已知的三個(gè)內(nèi)角、的對(duì)邊分別為、,且
(Ⅰ) 求的值;
(Ⅱ)若,求周長(zhǎng)的最大值.

(1)(2)6

解析試題分析:解:(Ⅰ)∵b2+c2=a2+bc,∴a2=b2+c2-bc,結(jié)合余弦定理知cosA=,∴A=,
∴2sinBcosC-sin(B-C)= sinBcosC+cosBsinC
=sin(B+C)
=sinA=            6分 
(Ⅱ)由a=2,結(jié)合正弦定理,得
b+c=sinB+sinC
=sinB+sin(-B)
=sinB+2cosB=4sin(B+),
可知周長(zhǎng)的最大值為6 .             12分
考點(diǎn):三角函數(shù)的性質(zhì),解三角形
點(diǎn)評(píng):主要是考查了余弦定理和正弦定理的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的角A、B、C所對(duì)的邊分別是,
設(shè)向量,
(Ⅰ)若,求證:為等腰三角形;
(Ⅱ)若,邊長(zhǎng),,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某城市設(shè)立以城中心為圓心、公里為半徑的圓形保護(hù)區(qū),從保護(hù)區(qū)邊緣起,在城中心正東方向上有一條高速公路、西南方向上有一條一級(jí)公路,現(xiàn)要在保護(hù)區(qū)邊緣PQ弧上選擇一點(diǎn)A作為出口,建一條連接兩條公路且與圓相切的直道.已知通往一級(jí)公路的道路每公里造價(jià)為萬(wàn)元,通往高速公路的道路每公里造價(jià)是萬(wàn)元,其中為常數(shù),設(shè),總造價(jià)為萬(wàn)元.

(1)把表示成的函數(shù),并求出定義域;
(2)當(dāng)時(shí),如何確定A點(diǎn)的位置才能使得總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為,向量 ,且滿足。
(1)若,求角;
(2)若,△ABC的面積,求△ABC的周長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


;
(2) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在銳角△中,、、分別為角、、所對(duì)的邊,且
(1)確定角的大;
(2)若,且△的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三角形ABC中,已知,解三角形ABC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)的內(nèi)角所對(duì)的邊分別為.
(1)求的大小;(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)如圖,海中有一小島,周?chē)?.8海里內(nèi)有暗礁。一軍艦從A地出發(fā)由西向東航行,望見(jiàn)小島B在北偏東75°,航行8海里到達(dá)C處,望見(jiàn)小島B在北端東60°。若此艦不改變艦行的方向繼續(xù)前進(jìn),問(wèn)此艦有沒(méi)有觸礁的危險(xiǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案