【題目】已知函數(shù)(其中)的最小周期為.
(1)求的值及的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標縮短為原來的(縱坐標不變)得到函數(shù)的圖象,若關(guān)于x的方程在區(qū)間上有且只有一個解,求實數(shù)m的取值范圍.
【答案】(1),,;(2),或.
【解析】
(1)化簡得到,根據(jù)周期得到,再計算函數(shù)的單調(diào)遞增區(qū)間得到答案.
(2)根據(jù)平移和伸縮變換得到,得到,在區(qū)間上,,,得到答案.
函數(shù)
,
它的其中的最小周期為,,故
令,求得,
可得函數(shù)的增區(qū)間為,.
將函數(shù)的圖像向右平移個單位,可得的圖像,
再將圖像上各點的橫坐標縮短為原來的縱坐標不變得到函數(shù)的圖像,
若關(guān)于x的方程在區(qū)間上有且只有一個解,
即區(qū)間上有且只有一個解,
即的圖像和直線只有1個交點.
在區(qū)間上,,.
故或,求得,或,
求實數(shù)m的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目,兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)主持人從隊所有選手成績中隨機抽取2個,求至少有一個為“晉級”的概率;
(2)主持人從兩隊所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù).
(1)求實數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當時,函數(shù)的值域是,求實數(shù)與的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】的內(nèi)切圓與三邊的切點分別為,已知,內(nèi)切圓圓心,設(shè)點A的軌跡為R.
(1)求R的方程;
(2)過點C的動直線m交曲線R于不同的兩點M,N,問在x軸上是否存在一定點Q(Q不與C重合),使恒成立,若求出Q點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點,AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)對其定義域內(nèi)的任意,,當時總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:
緊密函數(shù)必是單調(diào)函數(shù);函數(shù)在時是緊密函數(shù);
函數(shù)是緊密函數(shù);
若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;
若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導數(shù),則其導函數(shù)在定義域內(nèi)的值一定不為零.
其中的真命題是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,,記.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),,曲線在其與y軸的交點處的切線記作,曲線在其與x軸的交點處的切線記作,且.
(1)求之間的距離;
(2)對于函數(shù)和的公共定義域中的任意實數(shù),稱的值為函數(shù)和在處的偏差.求證:函數(shù)和在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面為正方形,△PAD為等邊三角形,平面PAD丄平面PCD.
(1)證明:平面PAD丄平面ABCD:
(2)若AB=2,Q為線段的中點,求三棱錐Q-PCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com