10.三棱錐S-ABC的所有頂點都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,則球Q的體積為(  )
A.$\frac{\sqrt{3}}{2}$πB.$\frac{3}{2}$πC.$\sqrt{3}$πD.12π

分析 根據(jù)題意,三棱錐S-ABC擴展為正方體,正方體的外接球的球心就是正方體體對角線的中點,求出正方體的對角線的長度,即可求解球的半徑,從而可求三棱錐S-ABC的外接球的體積.

解答 解:三棱錐S-ABC的所有頂點都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,
三棱錐擴展為正方體的外接球,外接球的直徑就是正方體的對角線的長度,
∴球的半徑R=$\frac{\sqrt{3}}{2}$.
球的體積為:$\frac{4}{3}$πR3=$\frac{4}{3}$π•($\frac{\sqrt{3}}{2}$)3=$\frac{\sqrt{3}}{2}$π.
故選:A.

點評 本題考查三棱錐S-ABC的外接球的體積,解題的關(guān)鍵是確定三棱錐S-ABC的外接球的球心與半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意實數(shù)x使得f(a-x)+f(ax2-1)<0成立,則a的取值范圍是(-∞,$\frac{1-\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=ex,g(x)=1nx.
(I)分別求函數(shù)y=f(x)與y=g(x)圖象與坐標(biāo)軸交點處的切線方程;
(Ⅱ)設(shè)h(x)=f(x)-g(x),若函數(shù)h(x)在x=x0處取得極小值,求證:x0∈($\frac{1}{2}$,1),且h(x0)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,x),若$\overrightarrow a$∥$\overrightarrow b$,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)y=f(x)的最小值等于4,且f(0)=f(2)=6.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-kx,且函數(shù)g(x)在區(qū)間[1,2]上是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)函數(shù)h(x)=f(2x),求當(dāng)x∈[-1,2]時,函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),設(shè)F(x)=ax2+f′(x)(a∈R).F(x)是否存在極值?若存在,請求出極值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-(a+1)x+1.
(1)解不等式f(x)≥0;
(2)若f(x)在[1,+∞)單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若不等式f(x)≥0在x∈(1,2]上恒成立,求正實數(shù)a的取值范圍;
(4)若不等式f(x)≥0在a∈[1,2]上恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f($\sqrt{x}$)=$\sqrt{x}$+x(x≥0)的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)解不等式:$\frac{x+2}{2-3x}$>1.
(2)已知a,b,c都大于零,求證:a2+b2+c2≥ab+bc+ac.

查看答案和解析>>

同步練習(xí)冊答案