考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:求出f′(x)=ex-1,判斷單調(diào)性,函數(shù)f(x)=ex-x+a在(-∞,0)上單調(diào)遞減,在(0,+∞)單調(diào)遞增,得出極小值=f(0)=1-0+a=a+1,即a+1≤0即可.
解答:
解:∵函數(shù)f(x)=ex-x+a,
∴f′(x)=ex-1,
f′(x)=ex-1=0,x=0,
f′(x)=ex-1>0,x>0,
f′(x)=ex-1<0,x<0,
∴函數(shù)f(x)=ex-x+a在(-∞,0)上單調(diào)遞減,在(0,+∞)單調(diào)遞增,
x=0,f(x)取得極小值=f(0)=1-0+a=a+1,
∵函數(shù)f(x)=ex-x+a,
∴a+1≤0,
即a≤-1,
故答案為:(-∞,-1]
點(diǎn)評:本題考查了導(dǎo)數(shù)的運(yùn)用,函數(shù)的性質(zhì),零點(diǎn)的判斷方法,屬于綜合題,注意運(yùn)算準(zhǔn)確度.