(2013•香洲區(qū)模擬)與橢圓
x2
25
+
y2
9
=1
有相同的焦點且離心率為2的雙曲線標(biāo)準(zhǔn)方程是
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1
分析:求出橢圓
x2
25
+
y2
9
=1
的焦點坐標(biāo),設(shè)出雙曲線的方程,據(jù)題意得到參數(shù)c的值,根據(jù)雙曲線的離心率等于2,得到參數(shù)a的值,得到雙曲線的方程.
解答:解:∵橢圓
x2
25
+
y2
9
=1
的焦點坐標(biāo)為(-4,0)和(4,0),…(1分)
設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),
則c=4,…(2分)
∵雙曲線的離心率等于2,即
c
a
=2,∴a=2.     …(4分)
∴b2=c2-a2=12.                           …(5分);
故所求雙曲線方程為
x2
4
-
y2
12
=1
.…(6分).
故答案為:
x2
4
-
y2
12
=1
點評:本題主要考查雙曲線的簡單性質(zhì)和標(biāo)準(zhǔn)方程.解答的關(guān)鍵在于考生對圓錐曲線的基礎(chǔ)知識的把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)在銳角△ABC中,a,b,c分別為內(nèi)角A,B,C,所對的邊,且滿足
3
a-2bsinA=0

(Ⅰ)求角B的大;
(Ⅱ)若a+c=5,且a>c,b=
7
,求
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)已知甲:
a>1
b>1
,乙:
a+b>2
ab>1
,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)函數(shù)f(x)=2sin(
x
3
+
π
3
)
的最小正周期為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點,則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊答案