3.已知冪函數(shù)$f(x)={x^{2{m^2}-m-3}}({m∈Z})$為奇函數(shù),且在區(qū)間(0,+∞)上是減函數(shù),則f(x)=( 。
A.y=x3B.y=xC.y=x-3D.y=x-2

分析 根據(jù)函數(shù)單調(diào)性先求出m的值結(jié)合冪函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:∵f(x)在區(qū)間(0,+∞)上是減函數(shù),
∴2m2-m-3<0,
解得-1<m<$\frac{3}{2}$,
∵m∈Z,
∴m=0或m=1,
若m=0,則f(x)=x-3=$\frac{1}{{x}^{3}}$,是奇函數(shù),滿足條件..
若m=1,則f(x)=x-2=$\frac{1}{{x}^{2}}$,是偶函數(shù),不滿足條件.
故選:C

點(diǎn)評 本題主要考查函數(shù)解析式的求解,根據(jù)冪函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0,函數(shù)f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在區(qū)間$(0,\frac{1}{2}]$上至少存在一個實(shí)數(shù)x0,使f(x0)>g(x0)成立,則a的取值范圍是(  )
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線y=$\frac{1}{x}$與直線y=x及x=4所圍成的封閉圖形的面積為( 。
A.2ln2B.2-ln2C.7-2ln2D.$\frac{15}{2}$-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知tanα=3,計算$\frac{3sinα+cosα}{sinα-2cosα}$;
(2)若cos(α+β)=$\frac{1}{5}$,cos(α-β)=$\frac{3}{5}$,求tanα•tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平行四邊形ABCD中,AC為一條對角線,$\overrightarrow{AB}=({2\;,\;\;4})$,$\overrightarrow{AC}=({1\;,\;\;3})$,則$\overrightarrow{DA}$=(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列命題中:
①命題p:“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定?p“?x∈R,x2-x-1≤0”;
②汽車的重量和汽車每消耗1升汽油所行駛的平均路程成正相關(guān)關(guān)系;
③命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
④概率是隨機(jī)的,在試驗(yàn)前不能確定.
正確的有①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知函數(shù)f(x)=x3-mx2-nx的圖象與x軸相切,切點(diǎn)為(1,0),且g(x)=f(x)+1,求g(x)的極值.
(2)已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f'(0)=0,$\int_{\;-1}^{\;0}{f(x)dx=-4}$,求a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=log32,b=2-1,c=log56,則( 。
A.a<c<bB.b<c<aC.b<a<cD.a<b<c

查看答案和解析>>

同步練習(xí)冊答案