【題目】已知橢圓 的左右焦點(diǎn)分別為F1 , F2 , 且F2為拋物線 的焦點(diǎn),C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長分別為 和4.
(1)求C1和C2的方程;
(2)直線l1過F1且與C2不相交,直線l2過F2且與l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x軸上方,求四邊形AF1F2C的面積的取值范圍.
【答案】
(1)
解:由題意可知:拋物線的準(zhǔn)線方程x=﹣ ,c= ,
C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長分別為 和4,
,得 ,
∴C1和C2的方程分別為
(2)
解:由題意,AB的斜率不為0,設(shè)AB:x=ty﹣2,
由 ,得y2﹣8ty+16=0,△=64t2﹣64≤0,得t2≤1,
由 ,得(t2+1)y2﹣4ty﹣4=0,
,AB與CD間的距離為 ,
由橢圓的對稱性,ABDC為平行四邊形, ,
設(shè) ,
.
即為四邊形AF1F2C的面積的取值范圍.
【解析】(1)由橢圓及拋物線的性質(zhì),列方程組求得a,b和c的值,即可求得C1和C2的方程;(2)設(shè)直線方程,代入拋物線和橢圓方程,求得|AB|,則AB與CD間的距離為 ,利用橢圓的對稱性及函數(shù)單調(diào)性即可求得四邊形AF1F2C的面積的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P與兩定點(diǎn)A(﹣2,0),B(2,0)連線的斜率之積為﹣ . (Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)若過點(diǎn)F(﹣ ,0)的直線l與軌跡C交于M、N兩點(diǎn),且軌跡C上存在點(diǎn)E使得四邊形OMEN(O為坐標(biāo)原點(diǎn))為平行四邊形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若 ,△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)稱為雙曲函數(shù):雙曲正弦:shx= ,雙曲余弦:chx= ,雙曲正切:thx= .
(1)對比三角函數(shù)的性質(zhì),請你找出它們的三個(gè)類似性質(zhì);
(2)求雙曲正弦shx的導(dǎo)數(shù),并求在點(diǎn)x=0處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了宣傳,舉辦問答活動(dòng),隨機(jī)對該市15至65歲的人群進(jìn)行抽樣,頻率分布直方圖及回答問題統(tǒng)計(jì)結(jié)果如表所示:
組號 | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | a | 0.9 |
第3組 | [35,45) | 27 | x |
第4組 | [45,55) | b | 0.36 |
第5組 | [55,65) | 3 | y |
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機(jī)抽取3人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第3組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放a(1≤a≤4且a∈R)個(gè)單位的營養(yǎng)液,它在水中釋放的濃度y(克/升)隨著時(shí)間x(天)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)= ,若多次投放,則某一時(shí)刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次4個(gè)單位的營養(yǎng)液,則有效時(shí)間可能達(dá)幾天?
(2)若先投放2個(gè)單位的營養(yǎng)液,3天后投放b個(gè)單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 和 ,其中 , ,k∈R.
(1)當(dāng)k為何值時(shí),有 ∥ ;
(2)若向量 與 的夾角為鈍角,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn= (3n+5),正項(xiàng)等比數(shù)列{bn}中,b2=4,b1b7=256.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn , 求{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com