【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為( )
A.①②
B.③④
C.①③
D.②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項(xiàng)和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:
(1)求證:AB⊥CD;
(2)若M為AD的中點(diǎn),求二面角A﹣BM﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等比數(shù)列,sinB= ,
(1)求 + 的值;
(2)若 =12,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a∈R),給出兩個(gè)命題:p:函數(shù)f(x)的值域不可能是(0,+∞);q:函數(shù)f(x)的單調(diào)遞增區(qū)間可以是(-∞,-2].那么下列命題為真命題的是( )
A. p∧q B. p∨(q)
C. (p)∧q D. (p)∧(q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線 =1(a,b>0)的兩頂點(diǎn)為A1 , A2 , 虛軸兩端點(diǎn)為B1 , B2 , 兩焦點(diǎn)為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點(diǎn)分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知CD是等邊三角形ABC的AB邊上的高,E,F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(1)求直線BC與平面DEF所成角的余弦值;
(2)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,且過(guò)點(diǎn)C(2,1),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)D.
(1)求橢圓E的方程;
(2)點(diǎn)P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問(wèn)直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說(shuō)明理由:
(3)平行于CD的直線l交橢圓E于M,N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com