精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)已知,,

(1)若f(x)在處取得極值,試求c的值和f(x)的單調增區(qū)間;

(2)如右圖所示,若函數的圖象在連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在使得?(用含有a,b,f(a),f(b)的表達式直接回答)

(3)利用(2)證明:函數y=g(x)圖象上任意兩點的連線斜率不小于2e-4.

(Ⅰ) 單調增區(qū)間為: (Ⅱ) (Ⅲ)略


解析:

:(1),…1分

依題意,有,即  .…2分

. 令,4分從而f(x)的單調增區(qū)間為:; 5分

(2);…8分

(3),…9分

……10分

………12分

由(2)知,對于函數y=g(x)圖象上任意兩點A、B,在A、B之間一定存在一點,使得,又,故有,證畢.………14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分)已知向量 ,函數.   (Ⅰ)求的單調增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數一元二次方程的兩根都是虛數;

命題 存在復數同時滿足.

求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省高三第一次月考文科數學試卷(解析版) 題型:解答題

(本題滿分14分)已知函數

(1)若,求x的值;

(2)若對于恒成立,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、

⑴求、的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為,

的最大值;

(3)當取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習冊答案