若方程
x2
m-1
+
y2
3-m
=1
表示焦點在y軸上的橢圓,則實數(shù)m的取值范圍為______.
∵方程
x2
m-1
+
y2
3-m
=1
表示焦點在y軸上的橢圓,
∴可得
m-1>0
3-m>0
3-m>m-1
,解之得1<m<2
即實數(shù)m的取值范圍為(1,2)
故答案為:(1,2)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求經(jīng)過點(2,-3)且與橢圓9x2+4y2=36有共同焦點的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,左,右焦點分別為F1,F(xiàn)2,點G在橢圓上,
GF1
GF2
,且△GF1F2的面積為3,則橢圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程
x2
a2
+
y2
a+6
=1
表示焦點在x軸上的橢圓,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系xoy中,點P到兩點(-
3
,0),(
3
,0)
的距離之和等于4,設點P的軌跡為C,直線y=kx+2與C交于不同的兩點A,B.
(1)寫出C的方程;
(2)求證:-1<
OA
OB
13
4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
9
+
y2
16
=1
的焦點坐標為( 。
A.(0,5)和(0,-5)B.(5,0)和(-5,0)C.(0,
7
)和(0,-
7
D.(
7
,0)和(-
7
,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A,B,P為橢圓
x2
m2
+
y2
n2
=1(m,n>0)上不同的三點,且A,B連線經(jīng)過坐標原點,若直線PA,PB的斜率乘積kPA•kPB=-2,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q為線段PF2的中點,則橢圓C的離心率為( 。
A.
3
2
B.
5
3
C.
6
3
D.
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓
x2
16
+
y2
25
=1
上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習冊答案