【題目】若實(shí)數(shù)滿足,①的最大值為________;②若恒成立,則實(shí)數(shù)的取值范圍是________.

【答案】4

【解析】

1)首先畫出可行域,和的圖象,通過平移直線,確定的最大值;(2)當(dāng)時(shí),恒成立,當(dāng)時(shí),恒成立,即,轉(zhuǎn)化為斜率關(guān)系,利用可行域求不等式兩邊斜率的最值.

首先畫出可行域,令,畫出初始目標(biāo)函數(shù)的圖象,

,得,當(dāng)目標(biāo)函數(shù)的橫截距最大時(shí),也取得最大值,

所以平移至點(diǎn)處,函數(shù)取得最大值,

,解得: ,即,代入目標(biāo)函數(shù);

由可行域可知

當(dāng)時(shí),,此時(shí)恒成立,

當(dāng)時(shí),不等式整理為:恒成立,

設(shè),表示可行域內(nèi)的點(diǎn)與定點(diǎn)連線的斜率,由圖象可知當(dāng)定點(diǎn)與點(diǎn)連結(jié)時(shí),斜率取得最小值

設(shè),表示可行域內(nèi)的點(diǎn)與定點(diǎn)連線的斜率,由圖象可知當(dāng)與定點(diǎn)連結(jié)時(shí),斜率取得最大值

綜上可知:

故答案為:4;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(﹣1,)在橢圓C上,且|PF2|

1)求橢圓C的方程;

2)過點(diǎn)F2的直線l與橢圓C交于A,B兩點(diǎn),M為線段AB的中點(diǎn),若橢圓C上存在點(diǎn)N,滿足3O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)設(shè)x1,y1,證明x+yxy;

(Ⅱ)1abc,證明logab+logbc+logcalogba+logcb+logac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線為其焦點(diǎn),為其準(zhǔn)線,過任作一條直線交拋物線于兩點(diǎn),分別為、上的射影,的中點(diǎn),給出下列命題:

1;(2;(3;

4的交點(diǎn)的軸上;(5交于原點(diǎn).

其中真命題的序號為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓的右頂點(diǎn)到直線的距離為3.

1)求橢圓的方程;

2)過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行圍棋比賽,比賽要求雙方下滿五盤棋,開始時(shí)甲每盤棋贏的概率為,由于心態(tài)不穩(wěn),甲一旦輸一盤棋,他隨后每盤棋贏的概率就變?yōu)?/span>.假設(shè)比賽沒有和棋,且已知前兩盤棋都是甲贏.

(Ⅰ)求第四盤棋甲贏的概率;

(Ⅱ)求比賽結(jié)束時(shí),甲恰好贏三盤棋的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若點(diǎn)在直線上,且,求直線的斜率;

2)若,求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,為等邊三角形,是棱上一點(diǎn).

1)證明:

2)若平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱柱中,的中點(diǎn).

1)求證:平面;

2)求證:平面;

3)若上的動(dòng)點(diǎn),使直線與平面所成角的正弦值是,求的長.

查看答案和解析>>

同步練習(xí)冊答案