函數(shù)y=2x-3+
4x-13
的值域為
 
考點:函數(shù)的值域
專題:計算題
分析:先進行換元,令t=
4x-13
,把已知函數(shù)可轉化為關于t的二次函數(shù),結合t的范圍及二次函數(shù)的性質可求解
解答: 解:令t=
4x-13
,則t≥0且x=
13+t2
4

∴y=
13+t2
2
-3+t
=
1
2
t2+t+
7
2
=
1
2
(t+1)2+3

根據(jù)二次函數(shù)的性質可知,函數(shù)在[0,+∞)上單調遞增
故當t=0即x=
13
4
時函數(shù)有最小值
7
2
,函數(shù)沒有最大值
故函數(shù)的值域為[
7
2
,+∞

故答案為:[
7
2
,+∞
點評:本題主要考查了利用換元法求解函數(shù)的值域,解題中還有熟練應用二次函數(shù)的性質求解函數(shù)的值域
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cos(
π
6
-θ)=a(|a|≤1),求cos(
6
+θ)和sin(
3
-θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2+x≥2”的否定是( 。
A、?x0∈R,x2+x≤2
B、?x0∈R,x2+x<2
C、?x∈R,x2+x≤2
D、?x∈R,x2+x<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

M=(-1,1),N=[0,2),則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,三棱柱ABC-A1B1C1中,D為BC上一點,D1為B1C1的中點,A1B∥平面ADC1
(1)證明:A1D1∥平面ADC1;
(2)若AA1⊥平面ABC,AA1=3,等邊△ABC的面積為4
3
,求平面A1AB與平面ADC1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點分別是F1,F(xiàn)2,離心率e=
2
2
,P為橢圓上任一點,且△PF1F2的最大面積為1.
(1)求橢圓C的方程;
(2)設斜率為
2
2
的直線l交橢圓C于A,B兩點,且以AB為直徑的圓恒過原點O,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x-2y+2=0經過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點A和上頂點D,橢圓C的右頂點為B,點S是橢圓上位于x軸上方的動點,直線AS,BS與直線x=
10
3
分別交于M,N兩點.
(1)求橢圓C的方程;
(2)求線段MN的長度的最小值.
(3)當線段MN的長度最小時,在橢圓上有兩點T1,T2,使得△T1SB,△T2SB的面積都為
1
5
,求直線T1T2在y軸上的截距.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當0≤x≤1時,f(x)=x2,當x>0時,f(x+1)=f(x)+f(1),若直線y=kx與函數(shù)y=f(x)的圖象恰有7個不同的公共點,則實數(shù)k的取值范圍為( 。
A、(2
2
-2,2
6
-4)
B、(
3
+2,
3
+
6
C、(2
2
+2,2
6
+4)
D、(4,8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,其中俯視圖為正三角形,則該幾何體的外接球體積為(  )
A、
64
3
π
9
B、
256
3
π
9
C、
64
3
π
27
D、
256
3
π
27

查看答案和解析>>

同步練習冊答案