在平面直角坐標系xOy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過點(1,0).若對任意的實數(shù)m,定直線l被圓C截得的弦長為定值,則直線l的方程為________.

2x+y-2=0
分析:根據(jù)圓的方程求出圓心和半徑,由題意可得圓心C到直線l的距離為定值.當直線l的斜率不存在時,經(jīng)過檢驗不
符合條件.當直線l的斜率存在時,直線l的方程為 y-0=k(x-1),圓心C到直線l的距離為定值求得k的值,從而求得
直線l的方程.
解答:圓C:x2+y2-(6-2m)x-4my+5m2-6m=0 即[x-(3-m)]2+(y-2m)2=9,表示以C(3-m,2m)為圓心,半徑等于3的圓.
∵直線l經(jīng)過點(1,0),對任意的實數(shù)m,定直線l被圓C截得的弦長為定值,則圓心C到直線l的距離為定值.
當直線l的斜率不存在時,直線l的方程為 x=1,圓心C到直線l的距離為|m-3-1|=|m-4|,不是定值.
當直線l的斜率存在時,設直線l的斜率為k,則直線l的方程為 y-0=k(x-1),即 kx-y-k=0.
此時,圓心C到直線l的距離 d== 為定值,與m無關,
故 k=-2,故直線l的方程為 y-0=-2(x-1),即 2x+y-2=0,
故答案為 2x+y-2=0.
點評:本題主要考查圓的標準方程,直線和圓的位置關系,點到直線的距離公式,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知以O為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點,且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點,圓內(nèi)動點P使|
PA
|
、|
PO
|
|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點Q(-4,3),直線l與圓O交于M、N兩點,試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y=-3上,M點滿足
MB
OA
MA
AB
=
MB
BA
,M點的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動點,l為C在P點處的切線,求O點到l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知A(1,0),B(0,1),點C在第二象限內(nèi),∠AOC=
6
,且|OC|=2,若
OC
OA
OB
,則λ,μ的值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標原點為極點,x軸的正半軸為極軸建立相應的極坐標系.在此極坐標系中,若圓C的極坐標方程為ρ=2cosθ,則圓心C到直線l的距離為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點M(3
2
,
2
),橢圓的離心率e=
2
2
3

(1)求橢圓C的方程;
(2)過點M作兩直線與橢圓C分別交于相異兩點A、B.若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案