函數(shù)y=
x21-x
在x∈(1,+∞)上的最大值為
-4
-4
分析:將函數(shù)y=
x2
1-x
的解析式,化為y=-[(x-1)+
1
x-1
]-2,進而根據(jù)基本不等式,可求出函數(shù)的值域,進而得到函數(shù)的最值.
解答:解:y=
x2
1-x
=
(1-x)2-2(1-x)+1
1-x
=(1-x)+
1
1-x
-2=-[(x-1)+
1
x-1
]-2
∵x∈(1,+∞)時,x-1>0,
由基本不等式可得(x-1)+
1
x-1
≥2
則y≤-4
故函數(shù)y=
x2
1-x
在x∈(1,+∞)上的最大值為-4
故答案為:-4
點評:本題考查的知識點是求函數(shù)的最值,其中利用湊配法,將函數(shù)的解析式進行變形是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點個數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(
3
2
,3)
上的兩個函數(shù)f(x)=
a
1+x2
,g(x)=
1
x
-
3
16
,y=f(x)
的圖象在點A(
3
,f
3
)
處的切線的斜率為-
3
4

(1)求f(x)的解析式;
(2)試求實數(shù)k的最大值,使得對任意x∈(
3
2
,3),不等式f(x)≥kg(x)
恒成立;
(3)若x1,x2,x3∈(
3
2
,3),且3x1x2x3=2(x1x2+x2x3+x3x1)
,求證:
1
1+
x
2
1
+
1
1+
x
2
2
+
1
1+
x
2
3
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
 
.(只填正確說法序號)
①若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
y=
x-3
+
2-x
是函數(shù)解析式;
③若函數(shù)f(x)在(-∞,0],[0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
y=
1-x2
1-|3-x|
是非奇非偶函數(shù);
⑤函數(shù)y=log
1
2
(x2-2x-3)
的單調(diào)增區(qū)間是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述
①對于函數(shù)f(x)=-x2+1,當(dāng)x1≠x2時,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
);
②設(shè)f(x)=
1+x2
1-x2
則f(2)+f(3)+…+f(2012)+f(
1
2
)+f(
1
3
)+…+f(
1
2012
)=0;
③定義域是R的函數(shù)y=f(x)在[a,b)上遞增,且在[b,c]上也遞增,則f(x)在[a,c]上遞增;
④設(shè)滿足3x=5y的點P為(x,y),則點P(x,y)滿足xy≥0.
其中正確的所有番號是:
①②④
①②④

查看答案和解析>>

同步練習(xí)冊答案