A. | 10 | B. | 19 | C. | 20 | D. | 21 |
分析 由已知得a1<0,d>0,a10<0,a11>0,且a10+a11>0,a1+a19=2a10<0,由此能求出使Sn>0成立的最小自然數(shù)n的值.
解答 解:∵數(shù)列{an}是等差數(shù)列,它的前n項和Sn有最大值,
∴a1<0,d>0,
∵$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,
∴a10<0,a11>0,
且a10+a11>0,a1+a19=2a10<0,
∴S19=$\frac{19}{2}$×2a10<0,S20=$\frac{20}{2}$(a10+a11)>0,
故使Sn>0成立的最小自然數(shù)n的值20.
故選:C.
點評 本題考查等差數(shù)列中使Sn>0成立的最小自然數(shù)n的值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
年齡x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com