設二次函數(shù)f(x)=x2-(2a+1)x+3
(1)若函數(shù)f(x)的單調增區(qū)間為[2,+∝),求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[2,+∝)內是增函數(shù),求a的范圍.

解:函數(shù)y=x2-(2a+1)x+3=(x-2+3-
其對稱軸為:x=
(1)∵函數(shù)f(x)的單調增區(qū)間為[2,+∞),
,解得;
(2)∵函數(shù)f(x)在區(qū)間[2,+∞)上為增函數(shù),
,解得
分析:先將二次函數(shù)配方,找到其對稱軸,明確單調性,再研究對稱軸與區(qū)間的位置關系求解.
(1)根據(jù)函數(shù)f(x)的單調增區(qū)間為[2,+∞),得到,解此方程即可求得實數(shù)a的值;
(2)根據(jù)函數(shù)f(x)在區(qū)間[2,+∞)上為增函數(shù),得到,解此不等式即可求得a的范圍.
點評:此題是個中檔題.本題主要考查二次函數(shù)配方法研究其單調性,同時說明單調性與對稱軸和開口方向有關.解題時注意(1)(2)的區(qū)別:單調增區(qū)間是[2,+∝),說明二次函數(shù)的對稱軸是x=2;在區(qū)間[2,+∝)內是增函數(shù),說明該區(qū)間是函數(shù)遞增區(qū)間的子區(qū)間,因此二次函數(shù)的對稱軸在該區(qū)間的左邊.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c滿足f(-1)=0,對于任意的實數(shù)x都有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當x∈(-1,1)時,函數(shù)g(x)=f(x)-mx,m∈R是單調的,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0<x1<x2
1
a
,且函數(shù)f(x)的圖象關于直線x=x0對稱,則有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個零點,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足:當x=1時,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實數(shù)m,n,使x∈[m,n]時,函數(shù)的值域也是[m,n]?若存在,則求出這樣的實數(shù)m,n;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則有(  )

查看答案和解析>>

同步練習冊答案