某同學(xué)為了研究函數(shù)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長(zhǎng)為的正方形,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),設(shè),則.那么可推知方程解的個(gè)數(shù)是(    )
A..B..C..D..
C

試題分析:從圖中知的最小值是(當(dāng)中點(diǎn)時(shí)取得),最大值是(當(dāng)重合時(shí)取得),當(dāng)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí)在遞減,當(dāng)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí)在遞增,,故使成立的點(diǎn)有兩個(gè),即方程有兩解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義在上的函數(shù),如果對(duì)任意,恒有,)成立,則稱階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求證:函數(shù)上無(wú)零點(diǎn);
(3)已知函數(shù)階縮放函數(shù),且當(dāng)時(shí),的取值范圍是,求)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)對(duì)任意,都有,當(dāng)時(shí), 
(1)求證:是奇函數(shù);
(2)試問(wèn):在時(shí) 是否有最大值?如果有,求出最大值,如果沒(méi)有,說(shuō)明理由.
(3)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)證明:上為增函數(shù);
(Ⅲ)解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030207190303.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷并證明的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)=的最大值為,最小值為,
那么       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)的定義域?yàn)镽,若存在常數(shù)m>0,使對(duì)一切實(shí)數(shù)x均成立,則稱為F函數(shù).給出下列函數(shù):
;②;③;④
是定義在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)x1、x2均有.其中是F函數(shù)的序號(hào)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間單調(diào)增加,則滿足取值范圍是(    )
A.(,B.[C.(,D.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025250550315.png" style="vertical-align:middle;" />,若滿足下面兩個(gè)條件,則稱為閉函數(shù).
內(nèi)是單調(diào)函數(shù);②存在,使上的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025250659433.png" style="vertical-align:middle;" />,
如果為閉函數(shù),那么的取值范圍是(    )
A.B.<1C.D.<1

查看答案和解析>>

同步練習(xí)冊(cè)答案