分析 由已知中棱錐P-ABC中,側棱PA、PB、PC兩兩垂直,Q為底面△ABC內一點,若點Q到三個側面的距離分別為2,2,2$\sqrt{2}$,由此知,PQ是以此三垂線段為長寬高的長方體的體對角線,由此求出PQ長,進而得到以線段PQ為直徑的球的半徑,代入球的表面積公式,即可得到答案.
解答 解:∵棱錐P-ABC中,側棱PA、PB、PC兩兩垂直,
又∵底面△ABC內一點Q到三個側面的距離分別為2,2,2$\sqrt{2}$
∴PQ=$\sqrt{4+4+8}$=4
則線段PQ為直徑的球的半徑為2
∴以線段PQ為直徑的球的表面積S=4πR2=16π.
故答案為:16π.
點評 本題考查的知識點是球的表面積,棱錐的結構特征,其中根據棱錐P-ABC中,側棱PA、PB、PC兩兩垂直,Q為底面△ABC內一點,若點Q到三個側面的距離分別為2,2,2$\sqrt{2}$,求出PQ的長,是解答本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | p∧¬q | B. | ¬p∧q | C. | ¬p∧¬q | D. | p∧q |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$,-1 | C. | -$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$,1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com