【題目】由大于0的自然數(shù)構(gòu)成的等差數(shù)列{an},它的最大項為26,其所有項的和為70;
(1)求數(shù)列{an}的項數(shù)n;
(2)求此數(shù)列.
【答案】(1)n=5;(2) 2,8,14,20,26或26,20,14,8,2.
【解析】試題分析:不妨設(shè)最大項是an,由求和公式得n(a1+an)=140,因為{an}是自然數(shù)序列,140可以被n整除,又an<a1+an=140/n,an=26,所以n≤5,又a1=a1+an﹣an=140/n﹣26<an=26,所以n>=3即可得解;
(2)由(1)求出通項公式即可得數(shù)列.
試題解析:
設(shè)等差數(shù)列{an}的公差為d,又因為等差數(shù)列{an}的最大項為26,
(1)不妨設(shè)最大項是an
sn==70
因為{an}是自然數(shù)序列,所以n(a1+an)=140,140可以被n整除,
又an<a1+an=140/n,an=26,所以n≤5.
又a1=a1+an﹣an=140/n﹣26<an=26,所以n>=3.
d=(an﹣a1)/(n﹣1)=(52﹣140/n)/(n﹣1)
當(dāng)n=4,5時
對應(yīng)的d=17/3,6,故n=5
當(dāng)最大項是a1時,同理可求得:n=5
故n=5.
(2)由(1)知當(dāng)an=26,n=5時,an=6n﹣4,數(shù)列為2,8,14,20,26
當(dāng)a1=26,n=5時,an=32﹣6n,數(shù)列為26,20,14,8,2
所以答案為2,8,14,20,26或26,20,14,8,2.
點睛:本題考查等差數(shù)列的基本量運算求通項公式以及等比數(shù)列的前n項和,屬于基礎(chǔ)題. 在數(shù)列求和中,最常見最基本的求和就是等差數(shù)列、等比數(shù)列中的求和,這時除了熟練掌握求和公式外還要熟記一些常見的求和結(jié)論,再就是分清數(shù)列的項數(shù),比如題中給出的,以免在套用公式時出錯.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 和所在平面互相垂直,且, 分別為AC、DC、AD的中點
(1)求證: 平面BCG;
(2)求三棱錐D-BCG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為的正方形, 底面, 分別為的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若,試問在線段上是否存在點,使得二面角 的余弦值為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求函數(shù)在的單調(diào)區(qū)間;
(Ⅱ)方程有3個不同的實根,求實數(shù)的取值范圍;
(Ⅲ)當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某奧運會主體育場的簡化鋼結(jié)構(gòu)俯視圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,我們稱這兩個橢圓相似。
(1)已知橢圓,寫出與橢圓相似且焦點在軸上、短半軸長為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點、關(guān)于直線對稱,求實數(shù)的取值范圍;
(2)從外層橢圓頂點A、B向內(nèi)層橢圓引切線AC、BD,設(shè)內(nèi)層橢圓方程為+=1 (ab0),AC與BD的斜率之積為-,求橢圓的離心率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的半徑為2,圓心在軸的正半軸上,直線與圓C相切.
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點,且當(dāng)時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時,x﹣3y的最大值為( )
A.10
B.8
C.6
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com