已知橢圓內(nèi)一定點(diǎn)M(m,0)(m≠0)和直線,直線軸交點(diǎn)為K.

(1)過(guò)M的任意直線與橢圓交于A、B兩點(diǎn),證明:∠AKM=∠BKM;

(2)過(guò)點(diǎn)K的直線與橢圓相交于A、E兩點(diǎn),設(shè),過(guò)點(diǎn)E且平行于直線的直線與橢圓相交于另一點(diǎn)B,證明:

解:(1)過(guò)點(diǎn)A作直線的垂線,垂足為D,過(guò)點(diǎn)B作直線的垂線,垂足為C,

設(shè)A(),,則B(),

將點(diǎn)A、B的坐標(biāo)分別代入橢圓方程得    ①

  ②

       將①式兩端同乘以    ③

       消去,

       ∵,約去化簡(jiǎn)得

       ,

       即,即

       于是,∴△BKC∽△AKD,

       ∴∠BKC=∠AKD,故∠AKM=∠BKM.

       (2)先證明B、M、A三點(diǎn)共線,作直線AM與橢圓交于另一點(diǎn)B1

       由(1)知,∠B1KM=∠AKM,

      由對(duì)稱性易知EB1軸,故點(diǎn)B1與點(diǎn)B重合,

即AB經(jīng)過(guò)點(diǎn)M,過(guò)A、B、E分別作直線的垂線,垂足分別是D、C、R,

,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(
3
3
2
),橢圓C左右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為E,△EF1F2為等邊三角形.定義橢圓C上的點(diǎn)M(x0,y0)的“伴隨點(diǎn)”為N(
x0
a
y0
b
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓C1的方程為(x+2a)2+y2=a2,圓C1和x軸相交于A,B兩點(diǎn),點(diǎn)P為圓C1上不同于A,B的任意一點(diǎn),直線PA,PB交y軸于S,T兩點(diǎn).當(dāng)點(diǎn)P變化時(shí),以ST為直徑的圓C2是否經(jīng)過(guò)圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(Ⅲ)直線l交橢圓C于H、J兩點(diǎn),若點(diǎn)H、J的“伴隨點(diǎn)”分別是L、Q,且以LQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.橢圓C的右頂點(diǎn)為D,試探究△OHJ的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•聊城一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=
7
2
PF1
PF2
=
3
4
(O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)S(0,-
1
3
)
且斜率為k的動(dòng)直線l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出M的坐標(biāo)和△MAB面積的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:

的充要條件;

② 已知A、B是雙曲實(shí)軸的兩個(gè)端點(diǎn),M,N是雙曲線上關(guān)于x軸對(duì)稱的兩點(diǎn),直線AMBN的斜率分別為k1,k2,且的最小值為2,則雙曲線的離心率e=;

③ 取一根長(zhǎng)度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長(zhǎng)都不小于1 m的概率是

④ 一個(gè)圓形紙片,圓心為O,F為圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使MF重合,然后抹平紙片,折痕為CD,設(shè)CDOM交于P,則P的軌跡是橢圓。

其中真命題的序號(hào)是                 。(填上所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:

的充要條件;

② 已知A、B是雙曲實(shí)軸的兩個(gè)端點(diǎn),MN是雙曲線上關(guān)于x軸對(duì)稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,且的最小值為2,則雙曲線的離心率e=;

③ 取一根長(zhǎng)度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長(zhǎng)都不小于1 m的概率是;

④ 一個(gè)圓形紙片,圓心為OF為圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使MF重合,然后抹平紙片,折痕為CD,設(shè)CDOM交于P,則P的軌跡是橢圓。

其中真命題的序號(hào)是                 。(填上所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案