定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2,則f(-2)=
 
,則不等式f(1-2x)<f(3)的解集是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)奇偶性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由奇函數(shù)性質(zhì)可知f(-2)=-f(2),代入可得答案;由奇函數(shù)性質(zhì)可知f(x)在(-∞,+∞)上單調(diào)遞增,不等式f(1-2x)<f(3)可得1-2x<3,解得即可得到解集.
解答: 解:由于當(dāng)x≥0時(shí),f(x)=x2,則為增函數(shù),
∴f(-2)=-f(2)=-4,
由奇函數(shù)性質(zhì)可知f(x)在(-∞,+∞)上單調(diào)遞增,
不等式f(1-2x)<f(3),
可得1-2x<3,解得x>-1.
則解集為:(-1,+∞),
故答案為:-4,(-1,+∞).
點(diǎn)評(píng):題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x-1)(x-2)(x-3)…(x-101),則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把1,2,3,4,…,2013,2014這2014個(gè)自然數(shù)均勻排成一個(gè)大圓圈,從1開(kāi)始數(shù):隔過(guò)1劃2,3,4;隔過(guò)5劃掉6,7,8,這樣每隔一個(gè)數(shù)劃掉三個(gè)數(shù),轉(zhuǎn)圈劃下去,則最后剩下那個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1,直線(xiàn)x-2y+5=0上動(dòng)點(diǎn)P,過(guò)點(diǎn)P作圓O的一條切線(xiàn),切點(diǎn)為A,則|PA|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:
x+1
x-2
≤0
,q:x2-(a2+1)x+a2<0,若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行右面的程序框圖,輸出的S是( 。
A、18B、28C、40D、56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=loga
x+2
x+1
(a>0且a≠1).
(1)解不等式f(x)>0;
(2)若a>1,求f(x)的單調(diào)區(qū)間并指出增減性;
(3)若a=2,且x∈[-
15
7
,-2)∪(-1,0],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:已知兩焦點(diǎn)F1(-3,0),F(xiàn)2(3,0),且橢圓過(guò)(3,
16
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)兩點(diǎn)P(-2
2
,0),Q(0,
5
)的橢圓標(biāo)準(zhǔn)方程( 。
A、
x2
8
+
y2
5
=1
B、
x2
5
+
y2
8
=1
C、
x2
16
+
y2
9
=1
D、
x2
16
+
y2
18
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案