橢圓的左右焦點為,弦過點,若△的內切圓周長為,點坐標分別為,則 。
解析試題分析:先根據(jù)橢圓方程求得a和c,及左右焦點的坐標,進而根據(jù)三角形內切圓面積求得內切圓半徑,進而根據(jù)△的面積=△的面積+△的面積求得△ABF2的面積=3|y2-y1|進而根據(jù)內切圓半徑和三角形周長求得其面積,建立等式求得|y2-y1|的值.
根據(jù)橢圓方程,可知a=5,b=4,∴c=3,
左、右焦點(-3,0)、( 3,0),△的內切圓面積為π,則內切圓的半徑為r=,而的面積=△的面積+△的面積==3,
又△ABF2的面積═×r(=×(2a+2a)=a=5,3=5,=,故答案為
考點:橢圓的方程
點評:本題主要考查了直線與圓錐曲線的綜合問題,橢圓的簡單性質,三角形內切圓性質,本題的關鍵是求出△ABF2的面積,屬于中檔題
科目:高中數(shù)學 來源: 題型:填空題
設點P是雙曲線上除頂點外的任意一點,F(xiàn)1,F(xiàn)2分別為左、右焦點,c 為半焦距,PF1F2的內切圓與邊F1F2切于點M,求|F1M|·|F2M|=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
雙曲線C:x2 – y2 = a2的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A、B兩點,,則雙曲線C的方程為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com