已知函數(shù)f(x)=
1
3
x3+ax2+bx
(a,b∈R).
(Ⅰ)若曲線C:y=f(x)經(jīng)過點P(1,2),曲線C在點P處的切線與直線x+2y-14=0垂直,求a,b的值;
(Ⅱ)在(Ⅰ)的條件下,試求函數(shù)g(x)=(m2-1)[f(x)-
7
3
x]
(m為實常數(shù),m≠±1)的極大值與極小值之差;
(Ⅲ)若f(x)在區(qū)間(1,2)內(nèi)存在兩個不同的極值點,求證:0<a+b<2.
(Ⅰ)求導(dǎo)函數(shù)可得f'(x)=x2+2ax+b,
∵直線x+2y-14=0的斜率為-
1
2
,∴曲線C在點P處的切線的斜率為2,∴f'(1)=1+2a+b=2…①
∵曲線C:y=f(x)經(jīng)過點P(1,2),∴f(1)=
1
3
+a+b=2
…②
由①②得:a=-
2
3
,b=
7
3
…(3分)
(Ⅱ)由(Ⅰ)知:f(x)=
1
3
x3-
2
3
x2+
7
3
x
,∴g(x)=
m2-1
3
(x3-2x2)
,∴g′(x)=(m2-1)x(x-
4
3
)
,由g'(x)=0?x=0,或x=
4
3

當(dāng)m2-1>0,即m>1,或m<-1時,x,g'(x),g(x)變化如下表
x (-∞,0) 0 (0,
4
3
)
4
3
(
4
3
,+∞)
g'(x) + 0 - 0 +
g(x) 極大值 極小值
由表可知:g(x)極大-g(x)極小=g(0)-g(
4
3
)
=0-[-
32
81
(m2-1)]=
32
81
(m2-1)
…(5分)
當(dāng)m2-1<0,即-1<m<1時,x,g'(x),g(x)變化如下表
x (-∞,0) 0 (0,
4
3
)
4
3
(
4
3
,+∞)
g'(x) - 0 + 0 -
g(x) 極小值 極大值
由表可知:g(x)極大-g(x)極小=g(
4
3
)-g(0)
=-
32
81
(m2-1)-0=-
32
81
(m2-1)
…(7分)
綜上可知:當(dāng)m>1,或m<-1時,g(x)極大-g(x)極小=
32
81
(m2-1)
;
當(dāng)-1<m<1時,g(x)極大-g(x)極小=-
32
81
(m2-1)
…(8分)
(Ⅲ)證明:因為f(x)在區(qū)間(1,2)內(nèi)存在兩個極值點,所以f′(x)=0,
即x2+2ax+b=0在(1,2)內(nèi)有兩個不等的實根.
1+2a+b>0,(1)
4+4a+b>0,(2)
1<-a<2,(3)
△=4(a2-b)>0,(4)
 …(10分)
由 (1)+(3)得:a+b>0,…(11分)
由(4)得:a+b<a2+a,由(3)得:-2<a<-1,
∴a2+a=(a+
1
2
2-
1
4
<2,∴a+b<2.
故0<a+b<2…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案